Inferring Automata and its Application to Compositional

Verification
WPEII : Critical Review Report

Arvind Easwaran
arvinde@cis.upenn.edu
University of Pennsylvania, Philadelphia

December 15, 2005

Abstract

Given an oracle which can answer membership and equivalence queries for an un-
known regular language, we present algorithms for learning the regular set perfectly.
For the case where the oracle cannot reset the black box automaton to a fixed initial state,
we present efficient learning algorithms using homing sequences. Algorithms have been
described for two different representations of the finite automaton. In the special case
where the automaton is a permutation automaton, we present algorithms which can de-
duce the unknown regular set without the use of equivalence queries. We also describe
a modified learning algorithm which can be used to learn context-free grammars from
their structural descriptions. Application of these learning techniques for compositional
verification of symbolic modules has also been discussed. We also describe improve-
ments to the learning algorithm for context-free languages under certain restrictions on
the result of equivalence queries.

1 Introduction

Consider a simple robot placed in an unfamiliar environment. The robot would be equipped
with some sensors which provides the robot with information about its current state in the
environment. At each state the robot will have the option of executing some simple actions.
It may have no knowledge about the structure of the environment nor of the meaning of
actions it is executing. The goal of the robot is to use its experience and observations to infer
a model of the unknown environment. Once such a model has been inferred, the robot can
perform more effectively in the environment.

In this report, we summarize general algorithmic solutions developed for the specific
case when the unknown environment is a deterministic finite state automaton or a context-
free grammar. The goal is to infer the unknown structure by observing the input-output
behavior of the system. It has been shown in [2, 3, 4] that a combination of active experimen-
tation (membership queries asking whether a particular string belongs to the unknown lan-
guage) and passive observation (equivalence queries which conjectures an automaton and
asks whether the conjecture is correct) is both necessary and sufficient to learn the unknown
automaton. Angluin [2] and Gold [8, 7] show that it is NP-complete to find the smallest au-
tomaton consistent with a given sample of data (passive experimentation). Angluin [2] also

shows that learning by just actively experimenting is hard for a family of automaton. The
difficulty here is in reaching certain hard to reach states.

In spite of these hardness results, Angluin in [4] described an efficient inference proce-
dure for regular languages that is able to actively experiment with the unknown automaton
and in addition passively receives a counterexample for each incorrect conjecture. This al-
gorithm, exactly identifies the unknown structure in time polynomial in the size of the au-
tomaton and the length of the longest counterexample received. But a serious limitation of
this procedure has been the need to reset the automaton prior to execution of any member-
ship or equivalence query. Rivest and Schapire in [13] describe efficient algorithms which
circumvent this problem and no longer require the teacher to reset the automaton for each
query. These algorithms make use of homing sequences which every finite state automaton
must possess. A homing sequence is a sequence of input symbols whose execution from a
particular state of the automaton results in an output sequence which uniquely identifies the
state reached. The authors have given learning algorithms for two different types of finite
state automata representations. The paper [13] also improves the running time of Angluin’s
algorithm [4] by reducing the number of membership queries that must be performed (mod-
ifies the handling of counterexamples). Rivest and Schapire [13] have also described algo-
rithms for inference of unknown permutation automata in which the algorithms never seek
response to any equivalence queries.

Sakakibara in [14, 15] has described an adaptation of the Angluin’s algorithm [4] for in-
ference of context-free grammars and reversible context-free grammars. Since for a given
context-free language there are infinitely many context-free grammars generating that lan-
guage, it is difficult to infer the grammar without any structural information. Hence Sakak-
ibara in [14] has described an inference procedure for computing an unknown context-free
grammar from structural descriptions of the grammar. A set of structural descriptions for a
grammar consists of all the derivation trees for that grammar with the non-terminal labels on
the interior nodes removed. Alur et. al. in [1] have described a direct application of the learn-
ing algorithm for the symbolic compositional verification problem. In compositional verifi-
cation, a global property is verified locally at each component by making assumptions about
the other components in the system using assume-guarantee rules. If the actual components
are a refinement of the assumptions made regarding the environment, then the verification
of the assumption also implies verification of the actual components. In [1], the authors have
used the learning algorithm proposed by Angluin [4] and modified by Rivest [13] to gener-
ate a correct assumption for the environment. Counterexamples generated using symbolic
reachability techniques are then used to refine the unknown assumption automaton being
inferred.

This report is organized as follows: Section 2 gives basic definitions for automata rep-
resentation. Section 3 describes Angluin’s Lx algorithm along with improvements made to
it by Rivest et. al. Section 4 discusses the learning algorithms based on homing sequences
and Section 5 details the learning algorithms for permutation automata. Section 6 adapts
the L algorithm for learning context-free grammars and Section 7 describes application of
the algorithms to compositional verification. Section 8 improves the learning algorithm for
context-free grammars under certain restrictions on the result of equivalence queries.

2 Preliminary Definitions

We introduce two different representations of finite automata; Global State-Space based rep-
resentation and Diversity based representation. In the global state-space representation the
observer of the automaton moves from one state of the automaton to another observing the
outputs generated at different states. On the other hand, in the diversity based representa-
tion, the observer is stationary only observing the output generated at the start state of the
automaton. The outputs generated at the other states of the automaton are observed only
when they are transferred by the environment to the start state.

2.1 Global State-Space Representation

Global State-Space Representation A finite automaton M is a tuple M = (Q,%,4,q0,7)
where

e () is a finite and non-empty set of states of the automaton

e Y is the finite alphabet set also called the input symbols

e § is the transition function of the automaton mapping @ x X to Q
e ¢o € (Q is the initial state or start state of the automaton

e 7 is the output function of the automaton mapping @ to {0,1}.

In this definition the output alphabet set is binary, but all results summarized in this re-
port are applicable for any finite output alphabet set. A bijection can be easily established
between a finite automaton defined using acceptance/rejection and one defined based on a
binary output alphabet set as above (states with output symbol 1 can be regarded as accept-
ing states and those with output 0 can be regarded as rejecting states). Let ¥* refer to the
set of all finitely long sequence of input symbols generated from the alphabet set ¥. Then
we can extend the definition of the transition function ¢ in the usual way over the domain
¥*: 0(q, €) = q where € refers to the empty input sequence and 6(g, ua) = §(d(g, u), a) where
u € X, qg € Qanda € X. (¢, ua) refers to the state reached in the automaton M by executing
the input sequence ua starting from state ¢. For short, we will denote §(¢, u) by gu. Similarly,
we refer to the sequence of outputs produced by an input sequence v = ay,--- ,a, € X*
starting from a state ¢ € () as the output of v at g and is denoted by ¢ < u >.

q <u>=<(q),7v(qa1),v(qaraz), - ,y(qu) >.

It is important to note that v(qu) refers to the output generated at the last state of M reached
by executing the sequence u from state ¢ whereas ¢ < u > is a (Ju| + 1) tuple referring to the
sequence of outputs generated during execution of the input string u. Also, for u € ¥* we
define) < u > to be the set,

Q<u>={qg<u>|qeQ}
Q) < u > is the set of different output sequences that can be generated by the input string u

when executed from all the states of the automaton. Now, we give some definitions which
will be used in the later sections of the report.

3

Permutation Automata A finite automaton M is a permutation automaton if and only if
Va € 3,4(.,a) is a permutation of (). In other words, in a permutation automaton, for each
state ¢ € @ and each input symbol a € 3, there is exactly one transition labeled with a
incident on g.

Distinguishing Sequence An input sequence u € X* is said to distinguish two states ¢; and
¢z if and only if ¢1 < u ># ¢2 < u >. A distinguishing sequence of a finite automaton M is
an input sequence u € ¥* with the property that ¢g; = ¢» whenever ¢; < u >= g2 < u >.

Homing Sequence An input sequence h is a homing sequence if and only if (Vqi,q2 €
Q),q1 < h >= g2 < h >= qh = ¢2h. A homing sequence for a finite automaton is an
input sequence h such that the state reached by executing h is uniquely determined by the
output produced as a result of that execution. An important property of homing sequences
is that every finite automaton has at least one homing sequence.

For any finite automaton, it is easy to see that every distinguishing sequence is also a
homing sequence. In the special case of a permutation automaton, every homing sequence
of the automaton is also a distinguishing sequence. If h is a homing sequence, then for
two states ¢g; and ¢2 if ¢1 < h >= g2 < h > then ¢1h = g¢2h by definition. But since the
automaton is a permutation automaton, we have that ¢g; = ¢2 which then implies that % is a
distinguishing sequence. If ¢; # g2 then the path from ¢; to g; h using the sequence h and the
path from ¢, to g2h = g1 h using the sequence h must meet at some state on or before ¢, h. But
this implies that there exists a state in the automaton having two incident transitions labeled
with the same input symbol. This is clearly a contradiction for permutation automaton and
hence the states ¢; and ¢» must be the same.

The homing sequence defined above is a preset homing sequence. There also exists an
adaptive homing sequence for finite automata which is like the preset homing sequence
in that the output produced by executing the adaptive homing sequence can be used to
determine the state reached. However, at each step, the input action to be executed in an
adaptive sequence depends on the output observed upto that point.

Adaptive Homing Sequence An adaptive homing sequence u is a binary decision tree with
the following properties:

e The root node is labeled e.

Every other node is labeled with one of the basic input symbols from X.

Every transition in the tree is labeled with one of the output symbols ("0’ or '1’).

Every node in the tree has at most one outgoing transition labeled with either output
symbol.

e A sequence u is an adaptive homing sequence if and only if ¢; < u >= ¢ < u >
implies ¢1u = qou for all ¢1,¢2 € Q.

Depending on the output of the current state, appropriate transition in the adaptive sequence
is traversed and the input action corresponding to the destination node is executed.

2.2 Diversity Based Representation

In many practical applications, the diversity based representation of finite automata is more
compact and natural. It is based on the notion of input sequences as tests and equivalence of
these tests based on the outputs generated by them. Two tests t{,t3 € X* (input sequences)
are equivalent (written as ¢; = t9) if and only if for every state ¢ € Q, v(¢t1) = (qt2).
" =/ defines an equivalence relation on the set of all tests for the automaton. We denote the
equivalence class for a test ¢ as [t] which consists of all the tests equivalent to t. The value
of [t] at a state ¢ is y(qt). The diversity of the automaton (D(M) = [{[t] : t € ¥*}|) is the
number of such equivalence classes. We now show that the bounds on the diversity of any
finite automaton M with state space Q is given by log(|Q|) < D(M) < 2I9l. Each test class
can be represented by a combination of '0’/'1" output values that the class generates for all
the states. The upper bound is now trivial because 2/?! is the maximum number of possible
combination of ‘0’ /1’ outputs for all states that can be generated by a finite automaton with
state space (). Since any test must generate one such combination the diversity is clearly
less than or equal to 2!¢I. The lower bound is also trivial because the diversity of the repre-
sentation must distinguish all the states of the finite automaton. Two states of M are equal
if and only if every test has the same value in both the states. Since any state of M can be
determined from the set of outputs generated by all the test classes, at least log(|Q|) classes
are required to distinguish the states.

The diversity based representation for a finite automaton can be defined using an update
graph where each node of the graph represents a test equivalence class. Thus the total num-
ber of nodes of the update graph is equal to the diversity D(M). An edge labeled a € ¥ is
directed from a vertex [t;] to a vertex [t2] if and only if ¢; = aty. These edges are well defined
because t; = t implies at; = ats and hence by transitivity each vertex of the update graph
has exactly one edge labeled with a particular input symbol incident on it. The observer in
an update graph can only observe the output values generated at the state [¢]. If the current
state of the state-space based representation is ¢, then the output value at a state [t] of the
update graph will be equal to y(gqt). Hence the value at [¢] observed by the observer will be
equal to y(ge) = v(¢). When the automaton M makes a move on input a € ¥ and reaches
state ¢; = d(q, a), the values of the test classes get updated accordingly. The new value at
a state [t] will be given by the old value of the output at state [t'] such that ¢’ = at. This is
trivially obtained from the fact that v((¢a)t) = v(gat). Hence the update graph can be used
to efficiently simulate the finite automaton it represents.

A homing sequence for the diversity based representation of finite automaton is any
input sequence h which has the property that the observed output sequence ¢ < h > is
sufficient to determine the values of all the test classes at the state gh reached on execution
of h. In particular, a sequence % is a homing sequence, if for every test ¢ € ¥*, there exists
some prefix p of h such that p = ht ie., Vg € Q,v(qp) = v(qht).

Any update graph can be viewed more formally as a special kind of automaton called
the simple assignment automaton.

Simple Assignment Automaton A simple assignment automaton SAA is a tuple of the
form (V, ¥, T, vg,w) where:

e V is a set of variables

e X is the set of input symbols

e I'is the update function that maps V' x ¥ to V' updating the variable values.
e vy € V is the output variable and
e w is the initial value function mapping V" to {0,1}.

The state of the automaton is given by a valuation of all the variables in V. The start
state of the automaton is given by the initial value function w and the output of the machine
at any state is denoted by the variable vo. When a particular action a € X is executed, all
the variables in the automaton are updated using the function I' to generate the next state of
the automaton. The new value of any variable v € V is given by the value of the variable
v/ = T'(v,a). Function T' can be extended to X* as follows: I'(v,e) = v and I'(v,au) =
I'((I'(v,u)),a). Itis worth noting that SAA processes the input symbols in reverse order
thereby ensuring that the output generated on execution of an input sequence u € £* from
the initial state is given by w(I'(vg, u)).

Any update graph of a finite automaton can be represented as a simple assignment
automaton as follows. The set of variables V' can be mapped to the set of test equiva-
lence classes {[t]|(t € £*)}. The update function can be defined using the I' function as
I'([t],a) = [at]. The output variable vy is the test class [¢] because that is the value observed
by any external observer. The initial value function of a test class [t] is just the value of ¢ in the
initial state (y(qo, t)). Thus it can be seen that I'(vg, t) = [t] and hence w(T'(vg,t)) = v(d(qo, 1))
as required.

3 Learning Regular Sets using Minimally Adequate Teachers

In this section, we describe the first algorithm (Lx) developed for learning a regular lan-
guage from samples of data. The intuition for this algorithm was developed by Gold [7]
and the algorithm has been formally described and analyzed by Angluin [4]. We describe
the data structures and assumptions of the algorithm, describe the algorithm and analyze its
time and space complexity. Let the unknown regular language being learned be U with the
corresponding automaton My, the input alphabet set over which U is defined be ¥ and the
output symbol set be {0,1}. U consists of all strings in ¥* which outputs a ‘1’ on execution
in M, U-

3.1 Minimally Adequate Teachers

A teacher in a learning algorithm is an oracle or black box which can respond to queries
posed by the learner trying to learn the unknown regular language. For the algorithm de-
scribed in this section, we assume that the teacher can answer two types of queries. In a
membership query, the learner wants to determine the output (0 or 1) generated by the black
box finite automaton in response to a particular input sequence u. These type of queries are
referred to as “active experiments” because the learner is controlling the experiments com-
pletely. The second question that the learner can ask the teacher is validity of a conjecture
of the unknown finite automaton also known as an equivalence query. If the conjecture is
correct, then the teacher responds so and the algorithm can terminate outputting the correct
machine. On the other hand, if the conjecture is incorrect, then the teacher will respond with
a counterexample string u such that u is in the symmetric difference of the languages gener-
ated by the conjectured automaton and the actual automaton. Such equivalence queries are

referred to as “passive experiments” because the learner has no control over the counterex-
amples that are generated by the teacher. Teachers which can answer both these queries
correctly are referred to as minimally adequate teachers. Since membership queries have
only one correct answer, all minimally adequate teachers must give the same answer. But
for equivalence queries, the teacher can respond with any one of the many counterexamples
for a given conjecture. As will be seen later, since the running time of the algorithm depends
polynomially on the size of the counterexample, a minimally adequate teacher generating
the smallest possible counterexample for each conjecture will result in an efficient algorithm.

We assume that the minimally adequate teacher has information about the unknown
regular language in the form of a deterministic finite state machine. We also assume that
the teacher can always reset the current state of the automaton to the start state. This is
a strong assumption which will be relaxed when we describe learning algorithms based on
homing sequences. If the automaton representation has n states, then the teacher can answer
any membership query in time polynomial in n and the length of the input sequence whose
membership is being sought. Equivalence queries can similarly be answered by using a
polynomial time algorithm for testing equivalence of two automata which also returns a
counterexample if the automata are not equivalent.

3.2 Data Structures for the L* Algorithm

The Lx algorithm progressively classifies various input sequences based on the outputs they
produce until using the current membership information it can correctly conjecture the black
box automaton. To do this, the algorithm maintains an observation table whose rows are
labeled with a prefix-closed set of input strings over (S |J S¥) and columns are labeled with
suffix-closed set of input strings E. Each entry in the table is given by a function 7" which
maps (S|JSX) x E to the output alphabet set {0,1} i.e., T'(s;e;) = 0/1 iff y(qpsie;) = 0/1 in
the unknown automaton, respectively. This observation table is denoted by (S, E,T"). The
algorithm starts with an observation table having one row and one column labeled with the
empty string € and augments it with strings as and when required. To make a conjecture,
the algorithm uses the strings S of the table to represent the states of the conjectured finite
automaton. The strings (SX) are used to compute the transition function and the strings
E represent the distinguishing experiments for the conjectured machine. In order for the
algorithm to make a conjecture, the observation table must satisfy certain conditions which
we define below.

closed, consistent observation table Define row(s) for s € (S|JSX) to be the row vector
representing the values of the function 7" for the string s over all strings in E. An observation
table (S, E,T') is closed if for every s € S there exists a s’ € S such that row(s) = row(s’).
The observation table is said to be consistent if for every s, s’ € S such that row(s) = row(s’),
Va € ¥, row(sa) = row(s'a).

If the observation table (S, E,T') is closed and consistent then we can define a finite au-
tomaton M (S,E,T) = (Q,%,9,qo,~y) which will be consistent with the observation table
(S, E,T) as follows:

e Q= {row(s)|s € S}

e qop = row(e)

e i(row(s),a) = row(sa),Vs € S,Va € ¥ and
e y(row(s)) =T(s),Vs € S

Now, § is a well defined function (observation table (S, E, T') is closed), row(e) exists in the
table (S is prefix-closed) and output function « is well defined (£ is suffix-closed and 7'(s)
is defined for each s € S). Hence the mapping of the observation table (S, E,T') to the finite
automaton M described above is well defined.

Theorem 3.1 (Minimality of M (S, E,T)) If (S, E,T) is a closed and consistent observation table,
then M (S, E,T) as defined above is consistent with (S, E,T) and any other finite automaton M’
consistent with (S, E,T) has at least as many states as M.

We prove this theorem using the following lemmas.

Lemma 3.2 If (S, E,T) is closed and consistent then §(qo,s) = row(s) in M(S,E,T) forall s €
(SyUsz).

Proof We can prove this lemma by induction on the length of the string s. If s = € then by
definition of M (S, E,T') we have d(qo, €) = go = row(e). Let the lemma be true for all strings
of length less than or equal to k. Let s = s’a be a string in (S| SX) of length k + 1 where
a € 3. Since S is prefix-closed, s’ must belong to S and hence by the induction hypothesis
we have 0(qo, ') = row(s’). Then,

3(qo,s) = 0(6(go,s"),a) = d(row(s’),a) = row(s’.a) = row(s) which completes the proof.
g

Lemma 3.3 (Consistency of M (S, E,T)) If (S, E,T) is closed and consistent, then M (S, E,T)
is consistent with (S, E,T) i.e., forall s € (S|JSX) and e € E,~(qose) = T(se).

Proof We prove this lemma by induction on the length of the stringe € E. Ife =eand s € S
then v(qos) = T'(s) by definition. If s € SX then since (S, E, T) is closed, there exists s’ € S
such that row(s’) = row(s). Now, v(gos’) = T'(s") by definition and since row(s) = row(s’)
we have v(qos’) = T'(s). But from the definition of the transition function § for M (S, E,T)
and using Lemma 3.2 we have,

g0’ = (qo, s") = row(s’) = row(s) = §(qo,s) = qos

This proves the lemma for e = ¢. Let the lemma be true for all strings in E of length less
than or equal to k and let e = ae’ be a string of length k£ + 1 in E. Since FE is suffix-closed
¢ € Fandlets € (S|JSY). Since (S, E,T) is closed and consistent, there exists s’ € S such
that row(s) = row(s’). Now,

d(q0,5) = row(s) = row(s’) = é(qo, s')

Hence, 6(qo, se) = d(qo, sae’) = §(0(qo, $), ae)

= 6(0(qo,s"),ae’) = 6(qo, s'ae’)

Thus, v(gose) = v(qos'ae’) = T(s'ae’) by the induction hypothesis on e’. But since row(s) =
row(s’), T(s'ae’) = T(sae’) = T(se) which proves the lemma. O

Lemma 3.4 If (S, E,T) is closed and consistent and if M (S, E,T') has n states, then any other finite
automaton M' = (Q', %2, q)),~') consistent with T and having n or fewer states is isomorphic to
M(S, E,T).

Proof Refer to [4] for the proof of this lemma. O

Combining the results from Lemmas 3.2, 3.3 and 3.4, will then imply validity of Theo-
rem 3.1.

3.3 Hardness of Learning Regular Sets

In this section, we show that learning a regular language from a given sample of experiments
and their results (“passive experiments”) is an NP-complete problem [8, 6]. Let (S,E,T)
be some observation table as defined in Section 3.2 and D be a sample of data such that
D = {(s1,01), - ,(Sn,0n)} where for 1 < i < n,s; is an experiment string and o; is the
'0" =" 1’ output generated by the unknown automaton as a result of execution of string s;.
Holes in the observation table are entries whose 7" values are unknown (not given by the
sample data D). Two holes in an observation table are said to be tied iff their represen-
tative strings are equivalent (s;e; = spe; = T'(sie;) = T'(spe;)). The hole filling problem
Proie((S,E,T), D) is then defined as the problem of finding a suitable ‘0’ —' 1’ assignment
to the holes in the observation table (S, £, T") such that all the tied holes are assigned equal
values and the resulting table (S, E,T") is closed. We assume that all the states represented
by the set S are distinct and hence the table is trivially consistent. If the problem P (-, .)
has a solution then using Theorem 3.1 given in Section 3.2 a finite automaton consistent with
T can be constructed. Since the automaton is consistent with 7', it will be consistent with the
given sample of data D. We show that the P.(.,.) problem restricted to certain types of
observation tables is NP-complete which then implies that the general problem is also hard.
We will be reducing the satisfiability problem of conjunctive normal form (CNF) boolean
formulas to the hole filling problem. A boolean formula F’ is in conjunctive normal form: iff,

F' =C1 ANCy A -+ ACy, where each C; is a clause of the form, C; = ¢;1 Vg -+ V cip,

where the c;; are literals zj, or —z;, where z;, are boolean variables. We first reduce this general
satisfiability problem for F’ to the satisfiability problem of an equivalent boolean formula F
where F' is in CNF and in each clause either all the literals are complemented or none are.
This reduction can be performed by trivially replacing each clause,

C; =2k Vo V2, V2,V T2,

in F' with two clauses,

Coi_1 = Z; V 2y oV 2k, and Cy; = —|ZZ/- V 2k, g V2,

Ep

111 . "m0
) 01
1/00 1
Sp o Variables 21, , 2,
17171 10 00 3
"m0 oo 01
0]
7p(1
10 i 23
SpZ Iein—=j+1) : Clauses Cy, -+, C,
110 7 (n)

Figure 1: Reducing Satisfiability to the Hole Filling Problem

in F where 2/, - - - 2/, are all new boolean variables. It is easy to show that F” is satisfiable iff
I is satisfiable. We also assume that F' has the same number n of variables and clauses. This
can be easily done by adding an arbitrary number of new clauses having all new boolean
variables. For any such F' we define two characteristic functions,

Ir(i,7) = “hole” if z; € C; or —z; € C; and 0 otherwise.
7r (i) = 1if C; contains complemented variables and 0 otherwise.

We now prove that the hole filling problem Pj(.,.) is NP-complete by reducing the sat-
isfiability problem for F' to a corresponding hole filling problem.

Theorem 3.5 For the observation table (S, E,T), let S = {0,1,--- ,1""1} for some n, |S| =
2 and S be pairwise distinct with respect to the sample data D. Then the hole filling problem
Proie((S, E,T), D) is NP-complete.

Proof For any boolean formula F' of the above form, the sample data D is given by the
observation table M = (Sg, Er,Tr) described in Fig. 1. We now show that F is satisfiable
iff the hole filling problem Py, ((Sr, Er,Tr), D) has a solution. Firstly, none of the holes
in M are tied. The first row in Sp¥ can certainly be made equivalent to the first row in
Sr as shown. In order to make the C;—th row in Sp¥ equivalent to some z;—th row in Sf,
one must assign 7r(¢) to the rightmost position of the z;-th row. This implies assigning the
value 7 (i) to the variable z; in the formula . However not every z; can be assigned 7 (¢)
to satisfy C;. This is controlled by the function Iy (i,n — j + 1) in the j—th entry of row Cj;.
If this entry is 0 then row C; can never be made equal to row z;. Hence row C; can be made
equal to row z; iff I (i,n — j + 1) has a hole in that position iff in F' clause C; can be satisfied
by setting z; = 7r(i). O

10

3.4 The L+ Algorithm

The Lx learning algorithm which in every iteration computes a closed and consistent obser-
vation table and then makes a conjecture for the finite automaton is given in Algorithm 1.

Algorithm 1 L+ Algorithm
1: Initialize S and E to the empty string ¢
2: Construct initial observation table using membership queries for each a € ¥
3: while Teacher does not respond yes to an equivalence query do

4: while (S, E,T) is not closed or consistent do
5: if (S, E,T) is not closed then
6: Determine a string s € S¥ such that Vs’ € S, row(s) # row(s’).
7: Add s to the set S and compute row(sa) for each a € X.
8: end if
9: if (S, E,T) is not consistent then
10: Find s1,s2 € S and a € ¥ such that row(s1) = row(sz2) but row(sia) # row(ssa).
11: Determine string e € E such that T'(sjae) # T'(s2ae).
12: Add the string ae to E and update the observation table.
13: end if

14: end while
15 Since (S, E, T is closed and consistent, generate the conjecture automaton M (S, E, T').
16: if Teacher responds with a counterexample ¢ then

17: Add ¢t and all prefixes of ¢ to the set S.

18: Compute the observation table by extending 7' to (S |JSX)E using membership
queries.

19: end if

20: end while

The algorithm first computes the initial observation table for S = E = e. It then itera-
tively appends strings to £ and .S until the table becomes closed and consistent. If the table
is not closed, then there exists some string s € S¥ such that row(s) # row(s’) for any string
s' € S. The algorithm then adds string s to the set S thereby generating a new state for the
conjecture automaton. If the table is not consistent then for some s1,s2 € S,a € ¥ ande € F
such that row(s1) = row(sz2), we have T'(sjae) # T (s2ae) and hence row(sia) # row(ssa).
This would result in the transition function of the conjecture being inconsistent. Hence the
algorithm appends the string ae to the set ¥ which will then distinguish the two states s
and s, which were indistinguishable earlier. Finally, when the table is closed and consistent,
the algorithm generates the conjecture automaton M (S, E,T') as described in Section 3.2. If
the teacher returns a counterexample ¢, the algorithm adds ¢ and all its prefixes to the set S
in order that the next conjecture contains information about string ¢.

Correctness of the Lx algorithm is trivial because the algorithm terminates if and only
if the teacher returns yes which happens only when the algorithm generates a correct con-
jecture. Now we show that the algorithm eventually terminates. It is trivially true that any
finite automaton consistent with an observation table having n distinct rows, must have at
least n states. Let n be the number of states in the minimal automaton recognizing the un-
known language U. We now show that the number of distinct rows in the observation table
(S, E,T) constructed by the algorithm grows monotonically towards n. When the table is not

11

closed, a string sa € SX is added to the set S and since Vs’ € S, row(sa) # row(s’) the num-
ber of distinct rows in the observation table increases by at least one. Similarly, if the table is
not consistent, a string ae is added to the set E and since this string distinguishes two strings
51,52 € S which were earlier indistinguishable, the number of distinct rows in S again in-
creases by at least one. Hence the total number of times either operation is repeated over
the entire run of the algorithm cannot exceed n — 1. Thus the algorithm will eventually find
the table to be closed and consistent and make a conjecture. Now we show that the number
of distinct conjectures that the algorithm makes cannot exceed n — 1 which will then prove
that the algorithm terminates. If the algorithm makes an incorrect conjecture M (S, E,T),
the teacher returns a counterexample ¢ which is a string in the symmetric difference of U
and the conjectured language. Since M (S, E,T) is consistent with 7" and not equivalent to
My, My must have at least one more state than M (S, £/, T'). The algorithm now adds ¢ and
all its prefixes to the set S and computes a new consistent, closed table (S’, E’,T") and then
generates a new conjecture M'(S", E',T"). M'(S’, E',T") is consistent with T' (T” extends T)
and classifies ¢ similar to My which was not true for M (S, E, T). Hence M'(S’, E', T") has at
least one more state than the M (S, E, T') which implies that the algorithm will make at most
n — 1 incorrect conjectures before it guesses the right automaton M.

Now we analyze the running time of the algorithm and show that it is polynomial in
the number of states n of My and the size m of the longest counterexample returned by the
teacher. Let k be the size of the input alphabet X. Since a string is added to E every time
the table is found to be not consistent which occurs at most n — 1 times, the total number
of strings in E cannot exceed n (it initially contains €). Every time the table is not closed a
string is added to S and since this can occur at most n — 1 times, the number of such strings
cannot exceed n. For each counterexample returned, the set S gets appended with at most m
strings and since this can occur at most n — 1 times, the total number of such strings added
to the set S cannot exceed m(n — 1). Also, the maximum length of any string in E cannot
exceed n — 1 because it increases by one every time the table is not consistent. Similarly, the
maximum length of any string in S cannot exceed m + n — 1 because any counterexample
adds a string of length at most m to S and whenever the table is not closed, it increases the
length of the strings in S by at most one which occur at most n — 1 times. Thus the maximum
size of (S, E,T) cannot exceed (k + 1)(n + m(n — 1))n = O(mn?) and the maximum length
of any string in (S |J SX)E cannot exceed (m + n — 1 + n) = O(m + n). Checking whether
the table is closed or consistent can be done in time polynomial in the size of the table which
is a polynomial in n» and m and this is done at most n — 1 times. The conjecture automaton
can be constructed in time polynomial in the size of table and each membership query can
be computed in time O(m + n) and there are at most O(mn) such queries. Since the number
of states of the correct automaton My is n, for any incorrect conjecture there always exists a
counterexample of length less than or equal to n. Thus the entire algorithm can be executed
in time and space polynomial in n if the minimally adequate teacher can always return a
counterexample of length at most n.

3.5 Improved L+ Algorithm

We now describe an improvement given by Rivest et. al. [13] to the 'L« algorithm that
reduces the worst case number of membership queries generated. Entries of the observation
table (S, E,T) are filled using membership queries posed to the teacher. The number of
membership queries generated is equal to the cardinality |(S |J SX)E]| of the table (S, E, T).

12

For the L« algorithm |S| was bounded by O(mn) and E was bounded by O(n). We now
give an algorithm which bounds the size of the set S to O(n) thereby reducing the number
of membership queries. In order to achieve this bound, the algorithm will make additional
nlogm membership queries thereby giving a bound of O(n? + nlog m) on the total number
of membership queries.

The modified algorithm maintains the invariant that s;,so € S such that s; # sy =
gos1 # qos2 and hence |S| < n all the time. Since Vs;, s; € S, row(s;) # row(s;), the table can
never be inconsistent. Thus the algorithm starts with the sets S = E' = ¢ and builds a closed
observation table. Adding a row s € SX to S in order make the table closed, ensures that the
rows in S are still distinct because by definition row(s) # row(s’),Vs’ € S. The algorithm
now generates a conjecture automaton using the closed table and if the conjecture is correct
then it outputs the machine and halts. If the conjecture is incorrect, the algorithm receives a
counterexample from the teacher which it uses to update the observation table.

Let the conjecture made by the learner be incorrect resulting in the teacher generating a
counterexample z € ¥*. We now show that with an additional log |z| membership queries,
only one string e will be added to the set E (instead of adding all prefixes of z to S as in
the original Lx algorithm) such that the added string will distinguish two states s; € S and
s9 € S% which were as yet indistinguishable. This will result in a new string s being added
to the set S in order to make the table closed thereby increasing the size of S. Hence even in
the modified algorithm, the number of equivalence queries is bounded by n — 1.

We now demonstrate a procedure to compute the appropriate string e from the coun-
terexample z for the conjectured machine M’ = (@', X,0’,qo,7'). For 0 < i < |z|, let z = p;r;
such that |p;| = 4. Since z is a counterexample, there exists a longest suffix of 2 which when
executed from two equivalent states s; € S and so € S¥ in the conjectured machine give
different outputs. This procedure aims to compute this suffix by asking membership queries
on every suffix of z to the teacher. We execute string p; on the conjectured machine and then
seek a membership query for s;r; where s; = ¢'(qo, pi). If v(goz) = 0 then since z is a coun-
terexample, 7/(goz) = 1. Now, let o; = v(gos,r;) which is the output generated by processing
the first ¢ symbols in z on the conjecture and the remaining symbols on the correct automa-
ton. Then trivially, ap = 0 and «|;; = 1. This then implies that there exists some i such
that oy # ;41 which can be determined by a binary search in the range 1 < i < |z|. Thus
using log |z| membership queries we can compute the index ¢ such that o; # «;4;. From
the definition of «; it is then clear that 7;; is the experiment that must be added to E. Let
a € ¥ be the first symbol in r;. Then v(qos;r;) = v(qosiari+1) # V(qosi+17i4+1). By definition
of the observation table, s;11 = §'(qo, pia) = §'(si,a) and hence row(s;4+1) = row(s;a). But
the string ;11 clearly distinguishes these two states and hence addition of r;; to the set E
will result a new state s;a being added to the set S. For each of the n — 1 equivalence queries
log m membership queries are required to compute the longest suffix to be added to E. In
addition each of the entries in the table will require O(n?) membership queries. Thus the
total number of membership queries required is O(n? +nlogm). The length of the string for
each membership query is at most O(m + n). This modification to the original Lx algorithm
leads to a set £ which is no longer suffix-closed. We now modify the proof of Lemma 3.3 and
show that the lemma holds even if E is not suffix closed. This will then prove the correctness
of the modified algorithm using Theorem 3.1 given in Section 3.

Lemma 3.6 If (S, E,T) is closed and consistent, then M (S, E,T') is consistent with (S, E,T) i.e.,
forall s € (S|JSX)and e € E,v(qose) = T(se).

13

Proof Lete =ay,--- ,a, where a; € ¥. Now using definition of § and extending it to ¥* we
get,

5(Q0) 86) = 6((]0’ sayp - - am)
=0(0(qo,), a1 - am) = 6(row(s),ay - - - an,) from Lemma 3.2

= §(6(row(s),a1),az, - ,am) = d(row(sar),as - an) = é(row(s’),as - - ap,) since (S, E,T)
is closed

= §(row(s"), an,) by repeating the same argument as above for some s” € S
= row(s"am,) = row(sy) where sy € S
= (qo, s¢) from Lemma 3.2 in Section 3.

Now, [0(qo, se) = (g0, 55)] = lqose = qoss] = [v(qose) = 7v(qosy)] = [T (sy) = T(se)]
Since s € S and by definition row(s¢) € F iff T(sf) = 1 we get that

d(qo, se) =row(sy) € Fiff T'(sy) = 1iff T(se) = 1. O

4 Learning Regular Sets using Homing Sequences

Angluin’s Lx algorithm necessitates the minimally adequate teacher to reset itself to the start
state before answering every query. In this section we describe a modified algorithm given
by Rivest and Schapire [13, 12, 16, 9] which uses homing sequences to learn an automaton
even in the absence of a means to reset the automaton. Specifically, we describe algorithms
which with probability at least 1 — § output the correct conjecture in time polynomial in the
size of the automaton, the size of the longest counterexample returned by the teacher and
log(1/6) using a minimally adequate teacher without reset. We describe efficient algorithms
for the global state-space representation as well as the diversity based representation. In the
case of permutation automaton, we give a probabilistic algorithm which does not require
the teacher to provide any counterexamples. In this section we assume that the unknown
automaton being learnt is a strongly connected automaton (every state is reachable by some
string from every other state). This assumption is essential in the absence of a reset, because
the experiment can get stuck in one of the strongly connected components very easily and
never escape.

4.1 Algorithms for Global State-Space based Representation

We now describe the algorithm given in [13] that infers a regular language represented by
a global state-space representation using a minimally adequate teacher without reset. This
algorithm makes use of homing sequences defined in Section 3 for the global state-space
representation. We first describe an algorithm which assumes the knowledge of this homing
sequence and learns the automaton using the sequence. Later we describe a modification

14

to the algorithm which will not only infer the unknown regular set but also simultaneously
learn the homing sequence.

Given a finite state automaton, a simple algorithm for computing a correct homing se-
quence is given in algorithm 2. At each step, the algorithm determines a string = which
distinguishes two states that were not distinguishable by the homing sequence constructed
so far. It then appends this string z to the current homing sequence which will then dis-
tinguish the two as yet indistinguishable states. If the automaton has n states, then in each
iteration of the loop the resulting sequence distinguishes at least one more state. Hence the
main loop is executed at most n — 1 times. Further, in each execution of the loop since the
length of the string = appended to the sequence is at most n — 1 (for an automaton with
state space size n, there exists a string of length less than or equal to n — 1 that distinguishes
any given two states). Hence the total length of the homing sequence constructed by this
algorithm is O((n — 1)2).

Algorithm 2 Homing Sequence Generation for State-Space Representation
1: h=e

2: while 3g1,q92 € Q,q1 < h >= g2 < h > and q1h # ¢2h do
3: Find a x € ¥* that distinguishes ¢~ and g2h.

4: Seth = hx

5: end while

4.1.1 Global State-Space based Learning Algorithm (known homing sequence)

The main idea of this algorithm is to replace the implicit reset in the Lx algorithm with
the homing sequence. The homing sequence works like a reset in the sense that on execu-
tion of the homing sequence, the output generated by the sequence uniquely identifies the
destination state reached. The modified algorithm using homing sequence is described in
Algorithm 3. Given a black box automaton M and a perfect homing sequence h for M the
algorithm outputs a perfect conjecture for M.

Algorithm 3 Learning Regular Sets using State-Space based Homing Sequences

1: while true do
2: Execute h producing output o.
3: If L} does not already exist then create it as a new copy of Lx (represents a new virtual
teacher whose initial state is represented by the output o).
Simulate the next query using L.
if L} queries membership of input sequence v € ¥* then
Execute v and provide L} with the output of the final state reached.
end if
if L}, makes an equivalence query then
If the conjectured model is correct, stop and return the model.
10: Else supply the returned counterexample to L.
11: endif
12: end while

4
5
6:
7:
8
9

When we execute h from some state ¢ in the unknown automaton and get an output o,

15

then we know that the destination state reached gh can be represented by the string 0. But
since re-execution of the homing sequence does not guarantee that the output generated will
be o, there is no way to reset the automaton to this state repeatedly. Instead, the algorithm
described in Algorithm 3 maintains separate observation tables for each output observed.
Hence it simulates different copies of the observation table (one for each output of the hom-
ing sequence). Since in each iteration, at least one of the copies must make progress, after
n(Ny + Ng) iterations the conjectured automaton must be correct. Here N, is the num-
ber of membership queries and Ng is the number of incorrect conjectures made by a single
copy of the observation table before it can conjecture the correct automaton. From Section 3
Ny = O(kn? + nlogm) and Ng = n — 1. Since there are at most n copies of the observation
table (n states in the unknown automaton will result in n distinct outputs for the homing
sequence), after n(INys + Ng) iterations at least one of the observation tables must represent
a correct conjecture of the unknown automaton.

4.1.2 Global State-Space based Learning Algorithm (unknown homing sequence)

In this section we describe the algorithm given in [13] that combines inference of a correct
homing sequence along with the inference of the unknown automaton. At every stage, we
assume that the known sequence h is a correct homing sequence. We use the algorithm
described in Section 4.1.1 to construct multiple copies of the observation table. If evidence
arises that h is not a correct homing sequence, then we will append an appropriate string to
h and re-execute the entire algorithm assuming that the new string is the homing sequence.
If h is not a correct homing sequence then there exists two states ¢1, g2 € @ in the unknown
automaton such that g; < h >= g2 < h >= o but q1h # ¢2h. Now as part of the simulation
of L}, if we execute some string x once from ¢1h and then from g¢2h, output generated on the
two occasions will be different. Thus z then represents a string that distinguishes the two
states g1h and goh. Changing h to hx will then help distinguish the states ¢;h and g2h. At
this point the algorithm discards all existing copies of the observation table and starts afresh
except with the modified homing sequence hx. Since h can be extended in this fashion only
n — 1 times, the entire process is slower than the earlier algorithm by a factor of O(n). The
algorithm initializes h to € and is given in Algorithm 4. Given a black box automaton M and
the number of states n in M, the algorithm outputs a perfect conjecture for M.

Let (S5, Ey,T,) denote the observation table for L. If L*, makes more than Nj; + Ng
queries, then the number of distinct rows in the observation table will go beyond n. This
happens only if the sequence & is not a correct homing sequence. In order to find a suitable
string x to be appended to h, we have to find an inconsistency in the observation table. This
can be done using a probabilistic technique shown in the algorithm. Let on execution of the
sequence h from a state ¢ we generate the output o. Since there are n + 1 distinct rows in
the table by the pigeon-hole principle there is at least one pair of rows s; and s; such that
qhs; = qhs;. But since row(s;) # row(s;), there is some e € E, for which T,(s;e) # T5(s;€)
but y(ghs;e) = v(¢ghs;e). Hence an inconsistency in the table can be detected by executing
the strings s;e and sje. The probability that a randomly chosen pair of states will possess
the desired inconsistency is 1/ (";rl) The chance of choosing the correct experiment to run
among s;e and s;e is 1/2. Hence the probability of finding an inconsistency in one iteration
is at least 1/n(n + 1). Repeating this process n(n + 1)in(1/J) times gives a probability of at
least (1 — §) of finding an inconsistency. h is extended at most n — 1 times and each time at
most n copies of Lx are ever created. Hence the total number of counterexamples required

16

Algorithm 4 Learning Algorithm with Unknown State-Space based Homing Sequence
1: h=e
2: while a correct conjecture is not made do
3: Execute h producing output o.
4. If L} does not already exist then create it as a new copy of Lx (represents a new virtual
teacher whose initial state is represented by the output o).
5. if [{row(s) : s € S;}| < n then

6: Simulate the next query on L} as in Algorithm 3.
Check for inconsistency (A string = that distinguishes two as yet indistinguishable
states).
8: else
: Let {s1, - sn+1 C S5} be such that Vi, j, row(s;) # row(s;).
10: Choose a pair s;, s; randomly such that Je € E,, T'(s;e) # T'(sje).
11: Execute one of s;e or s;e with equal probability and check for inconsistency.
12: endif
13: if inconsistency found executing some string x then
14: Discard all existing copies of L* and update & to hx.
15: end if

16: end while

is at most n(n — 1) Ng. Further, since each extension of h has length at most m + n, the total
length of h cannot exceed O(n? + nm). Replacing § by §/n? above will result in an overall
probability success of 1 — § for all the n(n — 1) copies. This gives us the following theorem,

Theorem 4.1 Given § > 0, the algorithm given in Algorithm 4 halts and outputs a perfect model
with probability atleast 1 — § in time polynomial in n, m, k and log(1/d) and executes

O(n3(n +m)(nlog(n/8) + Ny + Ng)) actions.

The total number of counterexamples required is at most O(n*Ng)

If the length of the longest counterexample returned is m = O(n), then the number of actions
executed will be O(n®log(n/6)). If the number of states n of the unknown automaton is not
known a priori, then we can use a sequence of estimates F;,i > 0 where Ey = 1 and E; = 2t
for the number of states. After executing the loop in lines 8-11 a fixed number of times, if
no inconsistency is detected then the estimate for n can be revised (increased by a factor of
2). For each i > 0, let C; = 2(2! 4+ 1)In(1/5)/(1 — ¢;) be the maximum number of times lines
8-11 will be executed for a particular estimate of E;. ¢; is the probability with which no pair
of states in the observation table are inconsistent when the number of states in the table has
exceeded the current estimate E; by 1. We now prove a lemma which will show that the
modified algorithm halts and outputs a correct automaton with probability at least 1 — 6.

Lemma 4.2 Forany 6 > 0, the modified algorithm for unknown state space size, halts and outputs
the correct automaton with probability at least 1 — 0.

Proof Let the current estimate for the number of states be F; = 2' and let the current number
of distinct states in the observation table (S;, E;, T;) be 2 + 1. Since ¢; is the probability that

17

none of the pairs of states are inconsistent, the probability that some pair of states s;,s; € S;
are inconsistent is 1 — ¢;. Hence,

2i+1)_

Pr(Some randomly selected pair of states s;, sj are inconsistent) = (1 —¢;)/ (%,

Then, Pr(Inconsistency is detected between states s; and s;) = (1 — ei)/2(2i;1)

= (1-e)/[(2' +1)2].

This is the probability that some inconsistency is detected during an execution of the loop
when the current estimate is £;. The probability that no inconsistency is detected during all
C; executions of the loop is given by,

Pr(No inconsistency detected at some stage i) = [1 — (1 —¢;)/(2))(2° + 1)]% =6

Now the probability that some inconsistency is detected during the entire execution over
all estimates F;,7 > 0 is then given by,

Pr(Some inconsistency detected during entire execution) = 1 — Il;>¢d

Since II;>(0d is at most 0 for any upper bound on i (§ is less than 1) we get that the prob-
ability that an inconsistency is detected is at least 1 — § as desired. 0

The algorithm given in Algorithm 4 can be modified very easily to handle adaptive hom-
ing sequences. The resulting procedure can generate the correct conjecture with high prob-
ability using only O(n°log(n/d)) actions. The entire algorithm remains the same except the
part where a distinguishing string z is appended to the existing wrong homing sequence h.
Since h is an adaptive homing sequence, it is represented in the form of a tree as described
in Section 3. Let z = ay, - - - a, (for each i, a; € X) be a string that distinguishes g;h and ¢2h
and vy be the last node in h visited while executing i from ¢; and g¢2. vy is the same node in
both cases since ¢ < h >= ¢» < h >. Since the execution terminated at v, the tree h does
not have a y(q1h)-child at vy. In the appended sequence h’ we add a ~(q;h)-child which is
the root of a linear subtree corresponding to the execution of z. More precisely, in h" each
node v;_1 has a y(g1hb; - - - bj—1)-child v; labeled b;,V1 < i < r. It is easy to see that the mod-
ified adaptive homing sequence h’ distinguishes the two states ¢; and ¢o. This leads to an
improved algorithm because not all copies of Lx need to be discarded. It is only sufficient
to discard L}, the particular copy on which an inconsistency was discovered. Thus at most
n — 1 copies of Lx are ever discarded and hence there are at most 2n — 1 copies of Lx ever
generated. Hence the bound for the adaptive homing sequence based algorithm decreases
by a factor of O(n).

4.2 Learning Algorithms for Diversity based Representations

In the presence of a reset in the diversity based representation of an automaton, we can
show that Angluin’s Lx algorithm can be modified to learn the unknown regular set in time
polynomial in D. The update graph described in Section 3 captures intuitively the reverse
behavior of the actual automaton being learned. By reversing the edges of the update graph,

18

we will get a finite state machine that accepts strings w € £* such that w® € U. This
isomorphic structure can be learned using the Lx algorithm by reversing all the membership
queries and reversing all the edges in the equivalence queries.

In the absence of a reset, we describe an algorithm given in [13, 16, 12] that constructs a
simple-assignment automaton equivalent to the update graph being learnt. The algorithm
builds a set of tests 7" which will eventually consist of one representative for each test equiv-
alence class. The tests are variables of the simple assignment automaton, where tests ¢t € T'
correspond to nodes [t] of the update graph. Intuitively, since in the update graph each test
class [t] has a single incoming edge labeled with a € ¥ from [at], the algorithm computes
for each test t and a € ¥ a test t’ € T equivalent to at. Now setting I'(t, a) = t/, the simple
assignment automaton generated will be isomorphic to the update graph. The algorithm
constructs a set T" of tests representing all the equivalence classes and determines for each
test z € ¥T atestin T equivalent to z.

Initially the set T' is a singleton {e}. A test ¢ is added to T iff ¢ is inequivalent to every
other testin 7" and hence |T'| < D. For each test z € ¥T a setr(x) C T is maintained that lists
all the tests in 7" currently equivalent to the test z. The algorithm starts with r(z) = T and
refines the set repeatedly when some test ¢ € r(x) is found to be not equivalent to . If |T'| =
D and r(x) = {t;} for all z € XT, then x must be equivalent to ¢, and a simple assignment
automaton isomorphic to the update graph can be easily constructed. Its variable set is
T, output variable is € and update function I' is defined as I'(t,a) = t4. For constructing a
conjecture using existing information where r(z) need not consist of only a singleton, we can
choose V=T, vy = [¢] and I'(¢,a) to be an arbitrary element of r(at). The counterexample
returned can be used to determine at € T and a € ¥ such that I'(¢,a) # at. The set r(at)
can then be updated by removing I'(¢, a) from the set. If at any point in execution some set
r(z) is reduced to the empty set, then z is inequivalent to every test in 7" and hence = gets
added to the set T'. Since |T'| < D and r(z) C T for each z, it is easy to see that this algorithm
converges after at most (k + 1) D? iterations.

4.2.1 Algorithm for Diversity based Representation (known homing sequence)

Let h denote a known homing sequence for the diversity based representation of the un-
known automaton. By definition for every test ht there exists some prefix of h equivalent to
ht. For each test ¢ the algorithm will aim to find that prefix of i equivalent to ht and hence
maintains a candidate set C(t) C {0, - - |h|} representing prefixes of h equivalent to ht. If
a prefix h; is found to be inequivalent to ht for some test ¢, then index i is removed from
C(t). Suppose executing h from some state ¢ produces the output 0 =< 09, -0, >. Now
aset X C {0,---|h|} is coherent with respect to o iff Vi,j € X,0, = 0;. If X is coherent
then the common value of o; for all ¢ in X is the value selected by X for ¢ and is denoted by
o[X]. If C(t) is coherent then the value of ¢ in the current state gh is known. On the other
hand, if C'(¢) is incoherent, then executing ¢ will result in at least one element of C(¢) being
removed. Further, if i is removed from C(t), then every other prefix h; of h such that h; = h;
is also removed from C(t). Hence C(t) reduces in this fashion at most D — 1 times. Further,
if C(t1) and C(t2) are found to disjoint at some stage, then the tests ht; and ht; can never be
equivalent. Also, if for some a € ¥ we find that C'(at1) # C(at2) then aty # aty = t1 # to. If
for each test t, the set C'(t) is coherent, then the output of each test ¢ at the current state gh is
known. This can be used to compute the initial value function w for the simple assignment
automaton. w(t) can be taken to be the selected value of C(t).

19

We now describe how a counterexample z can be used to refine the sets C'(t). Let z = p;s;
where |p;| =i forall 1 <i < |z|. Lett; = I'(¢, s;) and u; = p;t;. The algorithm now maintains
a candidate set for each such ;. If at a certain stage of the algorithm, there exists some i such
that C'(u;)) C(ui+1) = 0 then u; # u;4q. Since u; = p;t; and w; 1 = p;at;+1 for some a € %,
it implies that t; # at;4;. Butt; = I'(ti41,a) € r(at;11) it follows that ¢; can be deleted from
r(atit1). Itis easy to see that C'(uop) and C'(u,|) are disjoint. Since 2 is a counterexample, let
the predicted value of z at the current state gh be w(I'(¢, 2)) = w(to) be 0 where y(¢hz) = 1.
By definition, C(ug) = C(to) C o~ *(0) and C(uy,)) C o~ *(1) and hence C(ug) " C(uy,|) = 0.
Although the conjecture is inconsistent with z at the state ¢h, z could be consistent with the
actual automaton at other states. Executing h over and over again to reduce the sets C'(u;)
may lead to a state where the candidate sets C'(u;) are all coherent without any consecutive
pair being disjoint. The algorithm then makes a new conjecture with the same V, vy and
I but a new w chosen according to the current state. This then generates a new set of u;’s
for which candidate sets must be maintained. We later show that no more than D — 1 such
sequences need ever be created before one of the sets r(z) is reduced.

The complete algorithm is given in Algorithm 5. On receiving a counterexample, a se-
quence of tests g, - - - uyy, is created where I counts the number of such counterexamples
generated for a given I'. The set K (i, j) is a candidate set for u;;.

4.2.2 Correctness of the Learning Algorithm
We first prove a lemma bounding the number of counterexamples generated for a given I'.
Lemma43 [< (D -1)

Proof On each iteration [is reset to 0 iff K(i,/) K (i,j +1) = 0,1 < i < 1,0 < j < m;.
Hence in each iteration for [to be non-zero K (7, j) () K (i, j+1) # 0. Further, on each iteration
K(i',j") respects K(i,7) for1 <’ <i<1,0<j<myand1 < j < mj. A setS respects
another set S’ iff either S C S or SN S = . If K(i,j) is ever found to be incoherent,
then K (i, j') will be coherent on that iteration (i is the smallest index such that K (i, j) is
incoherent for some j). If some element of K (i’, ;') in K (3, j) is removed on updation, then
all elements of K (¢', j') will be removed. Hence K (i/, j') respects K (4, j) on each iteration for
i’ <.

To prove | < D — 1 we define a sequence of undirected graphs Gy, - - - G;. The vertex set
of each graphis {0, - - |h|}. In G; an edge connects r and s iff h, = h, or {r,s} C K(7,j) for
some 1 < i < 4,0 <j < my. We now show that the number of connected components in
this sequence of graphs reduces by at least 1 from one graph to the other. Since any graph
has at least one connected component and the number of components of G is at most D, we
would then have ! < D — 1.

The edge set of G;_1 is a subset of the edge set of GG;. So we find a single pair of vertices
connected in G; but not in G;_;. Since K (i,0) = C(ug) and K (i,m;) = C(uy,|) it is evident
that K (¢,0) and K (i, m;) are disjoint sets. Let r € K (i,0) and s € K(i,m;). Clearly, r and
s are connected in G; because K (i,7) () K(i,j7 + 1) # 0 on each iteration. But r and s are
not connected in G;_;. If they were, then there are adjacent vertices 7’ and s’ on the path
from r to s such that 7’ but not s’ is in K (7,0). Since r’ and s are adjacent, either h,» = hy
or {r',s'} C K(i,j) for some i’ < i. But this implies {r’, s’} respects K (i,0) which is a
contradiction.

This completes the proof proving that [< D — 1. O

20

Algorithm 5 Learning Algorithm for Diversity based Representation

1: Initialize T'to €, C(e) = {0,--- ||}, Va € ¥,7(a) =T and I'(¢,a) = €
2: Letl=0
3: while true do

4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

Execute h producing output o
if C(t) is incoherent for some ¢t € T then
Execute ¢t and update C(t)
else
if K (i,7) is incoherent for some 1 <i <,0 < j < m, then
Choose the smallest i for which some K (i, j) is incoherent
Execute u;; and update K (i, j)
else
w(t) =o[C(t)],teT
Conjecture S = (T, %,I', ¢,w)
if S is a perfect model then
Stop and output S
else
Obtain counterexample z
Letl=1+4+1,m; = |7|
for0 < j <m;do
uy; = p;I'(e, s;) where z = p;s; and |p;| = j
K(L,5) = {0, [hl}
end for
K(1,0) = o~ Yw(up))
Execute z = wy,, and update K (I,m;)
end if
end if
end if
if K(i,j)) (VK (i, +1) =0 forsome 1 <i<[,0<j<m,;then

T = agto where U j+1 = pagto, ’p‘ =7 and apg € X (uij = pr(to, ao))

r(@) = r(@) \ {T(t, a0)}
if r(z) = 0 then
r(t) =r({t)U{z} forallt € (XT\T)
T=TU{z}and C(z) ={0,---|h|}
r(ax) =T foralla € ¥
end if
I'(t,a) = any member of r(at) fora € £,t € T
=0
end if

39: end while

21

Theorem 4.4 The algorithm described in Algorithm 5 halts in polynomial time after executing

O(kmD*(|h| + D + m)) actions

Proof On each iteration, if ¢ ¢ C(t) then h; # ht for any ¢ by definition. Further, C(t) is
non-empty always because ht is equivalent to some h; since h is a diversity based hom-
ing sequence. These statements are also true for all the sets K(i,j). This implies that
K(i,j)(K (3,5 + 1) = 0 implies u;; # u; j+1 which then means x = agty # I'(to, ap). Hence
in each iteration ¢ ¢ r(x) only if z # t for t € T'and x € XT. Further, r(z) is non-empty on
each iteration. Hence if the last element of (z) is removed, then x # ¢ for all t € T'. Hence
it follows that |7'| < D on each iteration implying that the inner loop is executed at most
(k + l)D2 times i.e., [is reset to 0 at most this many times.

Theset {0 <i < |h| : h; = x} respects C(t) for all tests t and x. Hence C'(¢) can be reduced
at most D — 1 times which then implies that C'(¢)’s are incoherent at most D(D — 1) times.
Further K (i, j)’s are incoherent at most (k + 1)mD?(D — 1)? times where V1 < i < I,m; < m.
Further all the sets will be coherent at most (k + 1) D?(D — 1) times giving an overall bound
on the total number of iterations. Since at most || +m + (D — 1) actions are executed in each
iteration, the result follows. O

Learning algorithm when the diversity based homing sequence is unknown is a slight
modification to Algorithm 5 and given in [13]. In order that the algorithm executes in time
proportional to the bound on the number of actions, checking the coherence of candidate
sets must be done efficiently. In a naive implementation, checking coherence of a set S C
{0,---|h|} will take time proportional to O(|k|) which will then give a bound of O(D|h|)
for checking coherence of candidate sets of all tests in 7. This exceeds the action bound
by a factor of D. A different representation will maintain a partition 7 of the set {0, - - |h|}
with the interpretation that ¢, j are in different partitions iff they have been found to be not
equivalent. Hence |7| < D. Since the partition respects all the candidate sets, each candidate
set can be maintained as a set of pointers to this partition 7. Since each set has at most D
pointers, the coherence of the set can be determined in time O(D).

Maintaining the partition 7 is a simple task. Each time h is executed coherence of all the
blocks in the partition can be tested in time O(|h|). If any block s is found to be incoherent,
then it is split into two blocks s N ¢~1(0) and s N o~1(1). Since |7| < D this can happen at
most D — 1 times. Each time this happens, all the pointers from the candidate sets can be
updated in time O(mD?).

5 Learning Algorithms for Permutation Automaton

A permutation automaton A = (Q, 3,9, qo,7) is a special type of automaton such that the
transition function §(.,a) generates a permutation of the state space @ for every input sym-
bol a € X. In this section we describe algorithms from [13] for inferring an unknown permu-
tation automaton without the need for equivalence queries.

5.1 State-Space based Learning Algorithm

For permutation automata we can show that the homing sequence h is also a distinguishing
sequence ie., ¢ < h >= g2 < h > iff ¢ = ¢2. Hence the identity of a state ¢ is readily

22

given by the output of the execution of i from ¢. The problem of learning a permutation
automaton given the homing sequence can then be reduced to the problem of learning a
visible automaton. A visible automaton is an automaton which outputs the name of the
state reached at each step. Inference of a visible automaton is trivial; for each known state ¢
we determine all the successor states by querying d(q, a) for all @ € . This can be done by
simply executing a from ¢ and observing the output. The entire automaton can be learned
by executing O(kn?) actions.

To infer the permutation automaton, we label each state with ¢ < h > (to identify the
current state just execute h and observe the output). But executing h will leave us in a state
whose identity is not known immediately. Since the inference procedure for the visible au-
tomaton requires us to know the identity of this state, the algorithm must be able to identify
a state without the need for executing h from that state. This can be done by maintaining a
table u whose entries are such that for every o = ¢ < h >, u(c) = ¢h < h >. Hence we can
reach a state gh whose identity can be obtained from the table u, execute an experimenta € X
as suggested by the visible automaton procedure and then execute h again to determine the
identity of the state gha. This simple procedure is described in the algorithm 6.

Algorithm 6 Learning Algorithm for Permutation Automaton

1: Initialize u, d to be undefined everywhere
2: Execute h producing output o
3: while true do

4: if u(o) is not defined then
5: Execute i and store the output 7 in u(o)
6: o=T
7. else
8: if Ja € ¥, w € ¥*,d(u(o),w) is defined but d(u(o), wa) is undefined then
9: Choose the shortest such wa.
10: Let a = d(u(o),w)
11: Execute wa and then h producing output 7
12: dlaya) =Tand o =71
13: else
14: exit loop
15: end if
16: end if

17: end while
18: On input w € ¥*, let a = d(u(o), w). Output y(qw) = o where «y is the first symbol in
aand ¢ = u(o).

Let ¢, denote the state in @) for which ¢ = ¢, < h >. The table entry u(o) is then
goh < h >. The transition function d : Q < h > x¥ — @ < h > will be used to store and
compute the output of / in future states. Giveno € Q < h >and a € X, d(0,a) = goa < h >.
The following theorem proves correctness of the algorithm and bounds its running time.

Theorem 5.1 The algorithm given in Algorithm 6 halts after executing at most O(kn(|h| + n))
actions and in time O(kn(|h| + kn))

Proof Since the number of states is n after at most n + kn iterations the procedure must halt
since every entry of u and d will be defined. We can view the function d as defining a directed

23

graph with vertices () < h > and an edge from ¢ to d(c, a) with label a. The process of find-
ing the smallest sequence wa can then be achieved by finding a path in this graph from (o)
to another vertex a. This can be done using BFS in time O(kn) and the experiment wa has
length at most n. Hence the number of actions executed is upper bounded by O (kn(|h|+n)).
The rest of the algorithm can be executed in time O(|h|) using a binary tree representation
for@Q < h >.

Itis trivial to see that the following invariants hold during the execution of the algorithm,

If o € Q@ < h >and u(o) is defined then u(o) = goh < h >
Ifo €@ < h>,a€ ¥ andd(o,a) is defined then d(o,a) = g,a < h >

Hence the output generated by the algorithm is correct with respect to the unknown per-
mutation automaton being learnt. O

We now show that any sufficiently long random sequence will be a homing sequence for
the permutation automaton with high probability. We state the following lemma without
proof.

Lemma 5.2 Let gy and g2 be two distinct states in the automaton and x be a random sequence of
length 2kn*in(n). To construct x, at each step, with equal probability, we either do nothing or execute
a uniformly and randomly chosen basic action from ¥. Then the probability that v(q1z) # v(q2x) is
at least 1/(2n).

We will also use the following form of Chernoff bound.

Lemma 5.3 If Xy, -, Xy, are m independent Bernoulli trials, each succeeding with probability p
so that E[X;] = p, then for S = X1 + Xo -+ X;pand 0 < v < 1,

Pr(S > (1+7y)pm) < e=7'pm/3
Pr(S < (1 —~)pm) < e~ 7'Pm/2

Theorem 5.4 Let § > 0and h be a random sequence of length 8kn®.In(n).(n + in(1/6)). Then h is
a homing sequence with probability at least 1 — 6.

Proof Let z1,--- ,z, be a sequence of random strings constructed using the procedure de-
scribed in Lemma 5.2. Let y; = x122 - - - ;. We can claim that y, is a homing sequence with
high probability. Consider a sequence of trials where success in trial ¢ means that either y;
is a homing sequence or [Q < y; > | > |Q < y;—1 > |. Clearly, if n trials succeed then y,.
is a homing sequence. For any y;_; the probability of success on the ith trial is 1/(2n) from
Lemma 5.2. Applying the chernoff bound on these trials, we get that the probability of fewer
than n successes in r trials is at most 0 if r > 4n(n + In(1/0)). O

Diversity based learning algorithm for learning permutation automaton are similar in
structure to the algorithm described in this section and can be referred to in [13].

24

6 Learning Context-Free Languages

Structural descriptions of a context-free grammar are unlabeled derivation trees of the gram-
mar. In this section we present a learning algorithm given in [14, 15] which efficiently learns
structural descriptions of an unknown context-free language using membership and equiv-
alence queries similar to the Lx algorithm described in Section 3 for regular languages. Levy
and Joshi in [10] and Fass in [5] have shown that efficient grammatical inferences in terms
of structural descriptions is possible. It has been shown that the set of derivation trees rep-
resenting a particular context-free grammar is a rational set of trees. Since a rational set
of trees can be recognized by a tree automaton, the problem of learning a context-free lan-
guage reduces to the problem of learning a tree automaton. Here the problem has been
slightly modified from the standard grammatical inference problem of learning the context-
free grammar. For a given context-free language it is known that there are infinitely many
grammars that generate the language such that the structural descriptions of those gram-
mars are different. We first give the basic definitions and then describe the algorithm along
with its analysis. This algorithm not only finds a context-free grammar for the unknown
language but also guarantees that the grammar is structurally equivalent to the unknown
language (equivalence is based on the structural descriptions returned by the teacher).

6.1 Basic Definitions

Let N be the set of natural numbers and /Nx denote the free monoid generated by N with
identity element e and the concatenation operator ".". For any z,y € N* we define the order-
ing relation y < z iff z = y.2z for some z € Nx. Further, y < z iff y < z and y # z. Here we
will denote a concatenated string z.y as xy. Let V be a finite set of symbols associated with
arank relation r, C V' x N. V,, denotes the subset { f € V|(f,n) € r,} of V. V,, identifies the
set of symbols having arity n. In terms of context-free grammars these refer to non-terminals
that can derive n elements in some production. Hence Vj, refers to the terminal symbols or
the input alphabet of the grammar. A tree or structural derivation over V is a mapping ¢
from Dom; into V where Dom; is a finite subset of Nx* such that,

o If x € Domyand y < x theny € Dom,
e If yi € Dom; thenV1 < j <4 ,yj € Domy
o t(x) € V,,ift V1 < i <n,zi € Domy

A element of Dom; is the node of the tree and the mapping ¢(x) is called the label assigned
to node x. Let V7 denote the set of all trees over the set V. For convenience, f(ty,--- ,t,)
denotes a tree with root node labeled f € V,, and having n subtrees ¢; thru ¢,. A node
y is called terminal if Vo € Dom;,y £ x. The set of all terminal nodes of a tree is called
the frontier of the tree. All non-terminal nodes are called interior nodes. The depth of
x € Dom; denoted depth(z) is the length of = and depth of a tree ¢ is defined as depth(t) =
max{depth(x)|x € Dom.}.

Let $ be a new symbol of arity O notin V. Let Vi denote the set of all trees over V [J $ such
that there is exactly one terminal node in the tree labeled $. For s € V{{ and t € (VT JV{)
we define tree append operation # as follows,

25

s#t(z) = s(x) if v € Doms and s(z) # $ and
s#t(x) =t(y) if v = zy,s(z) = $and y € Domy

Forsets S C Vil and T C (VT U V'), let S#T define the set {s#t|s € S,t € T}.

A skeletal structural description consists of only the special symbol V' = o with the rank
relation r, C {0} x {1,2,--- ,m} where m is the maximum rank. A tree defined over o U V
is called a skeleton. Given any tree in t € V' its skeleton can be obtained by replacing the
labels of all the interior nodes with o and the operation is denoted by K ().

6.2 Tree Automaton and Context Free Grammars

We now describe a tree automaton which is a generator for a rational set of skeletal trees.
Since any context-free grammar can also be represented by a rational set of structural de-
scriptions, the problem of learning a context-free grammar then reduces to the problem of
learning a tree automaton that generates an identical set of skeletal structural descriptions.

A tree automaton over V is a tuple A = (Q, V., F') such that () is a finite set of states,
F C @ is the set of accepting states and 0 = (dg, - - - d,,,) consists of the following maps,

do(a) = a,Va € Vy

S Vi x (QUWF — Q,V1<k<m

The transition function § can be extended to trees in the usual way,
6(f(tr, -+ tr)) = 0k(f,0(t0), -+, 0(tk)) if k > 1

6(f) = 6o(f) where f € Vg

A tree t is accepted by a tree automaton iff §(¢) € F. Let T'(A) denote the set of trees ac-
cepted by the automaton A. We now state the replacement lemma for tree automata which
has been proved in [14].

Lemma 6.1 (Replacement Lemma for Tree Automata) Let A bea tree automaton as defined above.
Fors,s' e VI andt € Vi, if 6(s) = 6(s') then (t#s) = 6(t#s’)

A context-free grammar is denoted by the tuple G = (N, X%, P, S) where N is the set
of non-terminals, ¥ is the set of terminals, S € N is the start symbol of the grammar and
P is a production of the form A — o where A € N is a non-terminal and « is a string in
(N UX)*. For any strings 3 and +y a derivation step of the grammar is denoted as Ay = favy
and =" is the transitive closure of =. The language generated by a grammar is defined as
L(G) = {wjw € ¥*, 5 =* w}. The set D4(G) is defined as a set of trees over N |J X as,

DA(G)={alifA=aeX

DA(G) = {A(t1,+ ,t})|JA — By,---Br € PY1 <i<k,t; € Dp,(G)} if Ae N

26

Thus D4 (G) is the set of derivation trees of G’ with root A and hence Dg(G) = D(G) repre-
sents the set of all the derivation trees of G whose frontier gives the set of all the strings that
can be generated by G. The skeletal structural description of G is then denoted by K (D(G)).
Two context-free grammars are structurally equivalent iff K(D(G1)) = K(D(Gz)). We now
give a mapping from a grammar G to a tree automaton A(G) = (Q, o U %, 4, F') as follows:

e Q=Nand F ={S}
e jp(a) =a,Va e X
e Acéy(o,By1, - ,By),YA— By,---B,€P

Proposition 6.2 (Equivalence of skeletal structural descriptions) T(A(G)) = K(D(G)) i.e.,
the structural descriptions generated by the tree automaton A(G) and those representing the grammar
G are identical.

Proof Proof of this proposition is given in [14].

Now, we give a mapping of a tree automaton A to a context-free grammar N(A) =
(N, %, P, S) as follows,

o N=QU{S}

o P={0p(o,x1, 1) — a1 xplr, - 2, € (QUE)}
U{S — =1+ x|0k (0,21, -+ 1) € F}

Proposition 6.3 Given a tree automaton A the grammar N (A) generated as described above has the
property that K(D(N(A))) = T(A).

Proof Proof of this proposition is given in [14].

6.3 Learning Algorithm for Tree Automaton

In this section we extend the classical Angluin’s algorithm described in Section 3 for learning
tree automata. We first describe the modifications required to the observation table and then
describe the algorithm along with its time and space complexity.

6.3.1 Observation Table (S, E,T)

Let S be a finite set of subtree-closed skeletons over (o U)7 (if s € S then all subtrees
of s of length at least 1 is also in S). Let E be a set of trees over (o U Z)%. E is said to
be prefix-closed with respect to S if e € E — {$} then there exists ¢’ € E such that e =
e#o(s1, +,8i-1,8,8 -+ ,8,_1) for some s1,---,s,_1 € S and ¢ € N. The observation
table (S, E,T) consists of a non-empty finite subtree closed set S, a nonempty finite set £
prefix-closed with respect to S, X(S) = {o(u1,---up)|ur, - ,ux € (SUX),0(u1, --ug) &
S for k > 1} and function T" mapping (E#(S |J X (S5))) to {0,1}. T'(s) = 1 iff s is a structural
description of the language generated by the tree automaton being conjectured. A closed
and consistent observation table can be defined similar to the description in Section 3. If
(S,E,T) is a closed and consistent observation table then a tree automaton A(S, F,T') can
be conjectured from the table as follows:

27

o Q= {row(s)|s € S}

o F = {row(s)|s € S and T(s) = 1}

o 5(o,row(s1), - ,row(sy)) = row(o(s1, -~ sx)),Vs1, - s € (SUD)
e Jp(a) =a,YaeX

where for all @ € ¥ the function row is augmented to be row(a) = a. The deterministic tree
automaton so generated is well-defined. The following lemma can now be shown to be true
using arguments similar to Lemma 3.4 in Section 3.

Lemma 6.4 If (S, E,T) is closed and consistent then A(S, E,T) is consistent with T i.e., for every
se (SUX(S))and e € E, 6(e#s) isin Fiff T'(e#s) = 1.

Suppose Gy is the unknown language to be learned (up to structural equivalence). We
assume that terminal alphabet X is known. A structural membership query proposes a skele-
ton s and asks whether it is in K (D(Gy)). A structural equivalence query proposes a gram-
mar G’ and asks whether K(D(Gy)) = K(D(G')). Since equivalence of two structural de-
scriptions can be done in time polynomial in the size of the two descriptions an efficient
teacher can be synthesized for answering these queries. The algorithm and its analysis is
similar to the Lx algorithm given in Section 3 and hence not described here.

7 Compositional Verification by Learning Assumptions

The verification problem for a system consisting of multiple components can be decom-
posed into subproblems of verifying individual components using assume-guarantee rea-
soning [1, 11]. A component is verified by making reasonable assumptions regarding the
other components in the system. Verification succeeds if the properties of the component are
satisfied under the assumptions and the other components are a refinement of the assump-
tions (generate a strict subset of the behaviors allowed by the assumption). In this section
we describe a direct application of Angluin’s L+ algorithm to the compositional verification
problem. We first give basic definitions and then describe the application.

7.1 Basic Definitions

Let X be a set of boolean variables and the corresponding set of primed variables be denoted
by X’ = {z'|xz € X}. ¢ is a boolean formula over X and a valuation s of X satisfying ¢ is
denoted by ¢(s). A symbolic module or component is given by M = (X, X!, X Init,T)
where,

e X is a finite set of boolean variables controlled by the component,
e X! is a finite set of boolean input variables to the component disjoint from X,

e X9 C X is the set of output variables generated by the component visible to the envi-
ronment,

e Init(X) is the initial state predicate over X,

28

e T(X, X" X') is the transition predicate where X’ encodes the successor state of the
component.

Let X190 = X!|JX© denote the set of communication variables in the system. Let S be
the set of states of M (all possible valuations of X) and S7,S° and S'© denote all possible
valuations of X!, X9 and X'© respectively. Let s[Y] for Y C X and s € S denote the
valuation of Y at state s. A run of M is denoted by a sequence of states sg, s1,--- , where
so € Init(X), each s; € (SUS?) and T(s;[X], si[X'], s} ,1[X']) holds such that s, ;[X'] =
si+1]X]. M = ¢ holds iff property ¢ over X© holds for module M (for every sequence of
states representing a run of the module, the property holds at every state). A trace of M is
a run of M confined to the communication variables. The set of all traces generated by a
module is called the language of the module and denoted as L(A/). If M; and M, are two
modules then M; is said to be a refinement of M iff L(M;) C L(Ms) and is denoted as
M, C M.

Given two modules M = (X1, X{, X©, Init;, T1) and My = (Xo, X{, X9 Inito, Ty) such
that X; N Xy = ®, composition of M; and M, is given as M;||My = (X, XI,XO,ImLt,T)
where,

e X =X;UXy, X =XxfuXxfand X0 = XP U X9
° Inzt(X) = Im'tl(Xl) AN InitQ(Xz)
o T(X, X1 X") =Ty (X1, X], X)) N To(Xo, X1, XY)

The compositional verification problem can now be defined as,

Given two modules M; and M, as above with the additional constraint that X{ = X¢ and
X9 = X! and a safety property ¢(X 10 = X{0 = X19), does (M, || M>) = 6.

The assume guarantee rule used to prove this property in a compositional manner is that,
(M || A) | ¢) and (Ma C A) = (M || M2 = ¢)

To verify the property ¢ on M; || My we verify it on M; || A where A is some assumption
such that My C A.

7.2 Compositional Verification using L* Algorithm

Let M7 and M5 be two modules as defined in Section 7.1. Let L; be the set of traces o =
50,51 --- where each s; € S such that Vo € Lj,0 ¢ L(M;) or ¢(s;) holds for all s; € o.
The assumption A of the assume-guarantee rule must satisfy the constraint A C L;. Let
Ly = L(M>) be the set of traces generated by M3. Now A must also satisfy the constraint
Ly € Awhich then implies that a valid A is any language that is a superset of Ly and a subset
of L;. The Lx algorithm described in Section 3 is used to compute a correct assumption
A. Equivalence queries L(C) =" U are answered based on the result of a subset query
(L(C) C L) and a superset query (La C L(C)).

The paper answers membership queries with respect to the language L. This intuitively
tries to build the largest assumption A possible for a given M, and M, given M, || Ms = ¢.
On the other hand, if the oracle answers queries with respect to the language Ly = L(M3),

29

M.¢ My, My

memb(o)

L* Algorithm
generating C

No; p€ L\ C

MM ko M| My i 6

Figure 2: Symbolic Compositional Verification using Learning

then the algorithm is trying to construct the smallest valid assumption A for the components
M, and My when Ly C L.

As shown in Fig. 2, membership queries in the algorithm will be answered by checking
for safety with respect to module M;. To answer equivalence query, we first perform a subset
check by checking the conjecture with respect to Mj; if the query fails then the returned
counterexample trace will be used by the learner to compute the next conjecture. If the
query succeeds, then we check for refinement of M, with respect to the conjecture. If this
superset query fails, then the returned counterexample is checked for safety with respect to
M, . Since this counterexample is present in My, if the query fails then (M; || M) = ¢ and
the algorithm halts. If the query succeeds then the counterexample is returned to the learner.

We now compute bounds on the size of the automaton being constructed by the algo-
rithm. All membership queries and counterexamples are consistent with the language L. If
M, || M> does indeed satisfy ¢ then Lo will be a subset of L; and hence B; (automaton recog-
nizing L) is an adequate assumption to witness satisfaction of the property. If M;||M; does
not satisfy ¢ then L, is a subset of Ly and again B is an adequate assumption to witness fail-
ure of the property. Thus, this procedure always halts and reports correctly whether M || M-
satisfies ¢ and never generates any conjecture with states more than the states in a minimal
DFA accepting L. Using the Lx* algorithm directly will result in an inefficient implemen-
tation because the size of the alphabet S’° is exponential in the size of the communication
variables X’© which then implies that the size of the observation table constructed by the
algorithm will be exponential in the size of X 10 Alur et. alin [1] have presented a symbolic
implementation of the algorithm which will represent sets as BDDs and hence reduces the
size of the observation table by storing the transition function implicitly.

30

8 Comparison and Improvements

Angluin’s Lx algorithm described in Section 3 along with the improvements suggested by
Rivest et. al. described in Section 3.5 is the best known algorithm for computing an unknown
regular language using active and passive experiments (minimally adequate teachers) as-
suming that the teacher has the ability to reset the automaton prior to answering any query.
In the absence of a reset facility, Rivest and Schapire as described in Sections 4, 4.2 have
given efficient algorithms for inferring the unknown regular set using homing sequences.
They have described algorithms for both global state-space based representation and diver-
sity based representation of the finite state automata. Homing sequence based algorithms
assume that the unknown automaton being inferred consists of a single strongly connected
component. If there are multiple strongly connected components in the automaton, then the
experiments can get stuck in one such component without any means of coming out of it
due to the absence of a reset. But the homing sequence based algorithms halt and output the
correct automaton with a certain error probability if the homing sequence of the automaton
is not known. Learning context-free grammars from their structural descriptions is similar
to learning regular sets and hence Angluin’s L* algorithm has been appropriately adapted
by Sakakibara in [14] for learning tree automaton. In this section, we discuss problems as-
sociated with applying the improvements to the Lx algorithm suggested by Rivest et. al. to
the learning algorithm for grammars. We also show that the number of membership queries
executed by the algorithm can be significantly reduced if certain restrictions are enforced on
the counterexamples returned by the teacher.

8.1 Improved Algorithm for Context-Free Languages

Rivest and Schapire in [13] described improvements to the original L* algorithm which en-
sured that the number of elements in S was always less than or equal to n instead of mn
which was the case earlier. This reduced the number of membership queries from O(kmn?)
to O(kn? 4+ nlog(m)). In order to ensure that the number of entries in S was always less than
or equal to n, the algorithm had to make an additional log(m) membership queries for each
counterexample. The result was addition of a single string to the set E for each counterex-
ample returned, instead of m strings being added to the set S as in the original algorithm. If
2(]z| < m) was the counterexample returned, the log(m) membership queries were used to
determine the state sa € SY of the conjecture such that row(sa) = row(s’) for some s’ € S
but §(qo, sa) # s’ where ¢ is the transition function of the correct automaton. The string e
added to the set E distinguishes the states sa and s’ thereby increasing the size of set S by at
least 1 (sa gets added to set S in the next iteration to make the table closed).

The counterexample ¢ returned by the teacher for context-free languages is a tree. Let us
assume that the skeletal structural description ¢ is accepted by the conjecture tree automaton
A(S,E,T)=(S,V,0,F) (t € T(A(S, E,T))) but not by the unknown context-free grammar G
(t ¢ K(D(G))). We assume that the grammar G is represented by a tree automaton A(G) =
(8", V' ', F'). Further, let ¢t have m internal nodes with state labels s1,--- , s, such that
row(s;) = 6(s;) where s; € (S|JSE) for each i. Since t is not derived by the grammar
G, there exists at least one node s in ¢ such that the derivation from s is not in G i.e., if

row(s) = (o, row(sy), -+ ,row(sy))) = row(o(sy, - ,si)) for some s,s1--+,s; € S and
o(s1, - ,s) € SEthenin A(G), §,.(0,q1,- - ,qr) = row(o(q1,- - ,qr)) # gs where g; = &' (s;)
for each i and ¢5 = 0'(s) such that ¢, g1, - ,qx € S’. There could be other such derivations

31

in ¢t which are also not in A(G). We now restrict the type of counterexamples returned by the
teacher for which improvements to the algorithm described in Section 6 can be made.

Suitable Counterexample A counterexample ¢ returned by a minimally adequate teacher
for context free grammars is said to be a suitable counterexample iff

o t € A(S,E,T)\ A(G) and there exists exactly one set of nodes s, s1, - - - s € internal(t)
such that row(s) = §(o(s1,- -+ ,sk)) but §(s) = gs # 8 (o (51, - Sk))-

o t € A(G)\ A(S, E,T) and there exists exactly one set of nodes s, s1, - - - s, € internal(t)
such that §(s) = ¢s = ¢’ (o (81, -+ , sk)) but row(s) # 6(o(s1,-- - sx)) and

Assuming that the minimally adequate teacher returns only “suitable counterexamples”
(counterexamples with exactly one incorrect derivation) for every incorrect conjecture, we
show that modifications can be done to the learning algorithm given in Section 6 which
reduces the number of membership queries executed. Given a suitable counterexample

t, the algorithm will construct m new trees of the form u; = e;#0(si1,--- sik;) for 1 <
i < m where row(s;) = 6(c,row(si), - ,row(si,))),t = (eo#s0),e; € Vg ,s: € (SUSE)
and s;1, -, € S. Each e; replaces the subtree rooted at s; in ¢ with the terminal $.

We assume that ¢ is a valid derivation tree for the automaton A(S, E,T) but is not deriv-
able in A(G). This implies there exists some derivation step in ¢ of the form row(s;) =
d(o,row(si), -+ ,row(sk,)) but (o, qi1,- -+ ,qir,) # ¢s,- Starting from the root, the algo-
rithm will seek answers to membership queries u; in order of increasing depth of node $ in e;.
Now, ug =t ¢ T(A(G)). Since t is a counterexample, there exists some nodes s; and s;; = s;
such that row(s;) = 0(o,row(s;1),- -+ ,row(s;), row(s;), row(s;41) - ,row(s; x—1)))), wi =
ei#tsi € T(A(GQ)) and u; = e;#s; € T(A(G)). This condition is shown in Figure 3 in
which case we add the tree e; to E. Since ¢t was a suitable counterexample and s; was
the first node (from root) with this property, the only incorrect derivation in ¢ must have
occurred at node s;. Now for the tree ¢;, T'(e;#s;) will be 0 (e;#s; & T(A(G))) but T'(u; =
eiFo(sit, - Sit, S5, 8i 141, -~ Sik—1)) wWill be 1 (¢ is a suitable counterexample). Thus tree e;
will distinguish as yet indistinguishable states s; and o(s;1,- - ,si1, S5, 8i 41, - Si k—1) iN-
creasing the number of elements in .S by at least 1.

The number of membership queries can be reduced from O((n-+mn)+1(n+mn+k)%)n =
O(mn®*1) to O(n + U(n + k)Y)n + mn = O(nt! + mn) where k = |X|, is the number
of distinct ranks of elements in V and d is the largest rank of any element in V. (n 4+ mn)
represents the number of elements in .S (n elements to ensure table is closed and mn elements
from counterexamples). n is the number of elements in F and I(n + mn + k)¢ represents
the number of elements in S¥. In the modified algorithm, for each suitable counterexample
generated, we add one element to the set £ and at most n counterexamples will be generated.
Each time, the table is found to be not closed, a new element is added to S. Hence the table
will be found to be not closed at most n times. Further the size of set S will always be less
than or equal to n. This bound on the set S is achieved by an additional m membership
queries for each counterexample. Since |S| and |E| are bounded by n, the total number of
membership queries is O(n + I(n + k)?)n + mn = O(n?*! + mn). Also, the size of any tree
added to E has at most m nodes (size of the counterexample). Proof of lemma 6.4 given
in Section 6 must then be modified as was done for the L* algorithm since E is no longer
$-prefix closed with respect to S.

32

Only incorrect derivation occurs at s;

Figure 3: Suitable counterexample for modified learning algorithm

9 Conclusion

In this report, we have summarized results on learning algorithms for regular languages
and context-free grammars. We showed that learning a regular language from given data
without access to any active experimentation is a NP-complete problem. We then described
algorithms for learning regular languages using active and passive experimentation with or
without reset. Algorithms for learning permutation automata were then detailed where the
oracle is no longer required to answer equivalence queries. Modifications to the learning
algorithm for learning context-free languages from skeletal structural descriptions have also
been explained. We then show a direct application of regular set inference to symbolic com-
positional verification of components using assume-guarantee reasoning. We then suggest a
new efficient algorithm for learning context-free languages where the teacher is required to
provide counterexamples satisfying certain properties.

References

[1] Rajeev Alur, P. Madhusudan, and Wonhong Nam. Symbolic compositional verifica-
tion by learning assumptions. In Proceedings of Seventeenth International Conference on
Computer aided Verification, 2005.

[2] Dana Angluin. On the complexity of minimum inference of regular sets. Information
and Control, 39:337-350, 1978.

[3] Dana Angluin. A note on the number of queries needed to identify regular languages.
Information and Control, 51:76-87, 1981.

[4] Dana Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87-106, 1987.

33

[5] L. E Fass. Learning context-free languages from their structured sentences. In SIGACT
News, 15, pages 24-35, 1983.

[6] Valiant L. G. A theory of the learnable. In Communications ACM, 27, pages 1134-1142,
1984.

[7] E. Mark Gold. System identification via state characterization. Automatica, 8:621-636,
1972.

[8] E. Mark Gold. Complexity of automata identification from given data. Information and
Control, 37:302-320, 1978.

[9] Zvi Kohavi. Switching and Finite Automata Theory. McGraw-Hill, second edition, 1978.

[10] L. S. Levy and A. K. Joshi. Skeletal structural descriptions. Information and Control,
39:192-211, 1978.

[11] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[12] Ronald. L. Rivest and Robert E. Schapire. Diversity-based inference of finite automata.
In Proceedings of Twenty Eighth Annual Symposium on Foundations of Computer Science,
pages 78-87, 1987.

[13] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing
sequences. Information and Computation, 103(2):299-347, 1993.

[14] Yasubumi Sakakibara. Learning context-free grammars from structural data in polyno-
mial time. Theoretical Computer Science, 76:223-242, 1990.

[15] Yasubumi Sakakibara. Efficient learning of context-free grammars from positive struc-
tural examples. Information and Computation, 97(1):23-60, 1992.

[16] Robert E. Schapire. Diversity-based inference of finite automata. In Master’s Thesis, MIT
Lab, Technical Report : MIT/LCS/TR-413, 1988.

34

