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for processing power. However, these architectures share hardware resources among the processing cores
that causes timing unpredictability. Hence, the real-time industry has not yet adopted these architectures
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1. INTRODUCTION
Cyber-physical systems (CPS) are embedded computing systems in which the cyber
world of computation and communication closely interacts with the physical world
of sensors and actuators. These systems are abundant in many industries includ-
ing avionics, automotive, healthcare, consumer applications, etc. Many applications
in CPS are real-time, meaning its correctness not only depends on its output but also
the time within which the operation is performed. Therefore, these systems have to
meet their timeliness requirements. Real-time Applications (RTA) are classified based
on the consequence of not meeting their deadlines as hard, soft and firm. Hard RTA
are those in which missing a deadline will result in the failure of the entire system.
Hence, these applications are safety-critical in nature. Examples of such RTA are anti-
lock braking, adaptive cruise control, and inflation of airbags. Firm RTA are those in
which infrequent deadline misses are tolerable but will degrade the system perfor-
mance. The utility of the result after its deadline is zero. An example of firm RTA is
storm forecast systems. Soft RTA are similar to firm RTA, in that infrequent dead-
line misses are tolerable, but the utility of the result after the deadline is not zero.
Instead, it degrades as time passes after the deadline. An example of soft RTA is video
conferencing.

The hardware commonly used to realize Hard Real-Time Cyber-Physical Systems
(RT-CPS) are Application Specific Integrated Circuits (ASICs), which are electronic
circuits customized for specific purposes. These ICs typically contain a processing ele-
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Fig. 1. Architecture of P4080 [p40 2010]

ment having a single core, and several peripheral management units to access I/O de-
vices. But the complexity and number of applications in RT-CPS is always on a steady
rise, as a result of which there is a growing demand for ASICs that are more power-
ful. For example, in a modern day car there are around 200 ASICs (called Electronic
Control Units) networked together, serving a host of applications such as adaptive
cruise control, anti-lock braking, battery management, collision detection and avoid-
ance, parking assist, etc. [ecu 2010]. More powerful ASICs will help to mitigate scal-
ability issues arising from this trend of increasing number of applications by way of
consolidation. Multi-core ASICs are ICs where several processing cores are packaged
into one die, and they seem like a natural choice to satisfy this demand. One of the
primary advantages of using multi-cores is that the die can fit into a single package,
thus providing better Size Weight and Power (SWaP) characteristics than a system
with multiple single-core processors.

The architecture of P4080, a typical homogeneous Commercial-off-the-shelf (COTS)
multi-core processor from Freescale Semiconductors, is shown in Figure 1. It comprises
8 cores that use shared interconnect and memory for inter-core communications (de-
scribed under section 2 in reference manual [p40 2010]). The on-chip interconnect in
P4080 is termed as “corenet coherency fabric”. The SWaP benefits of this processor
arise from the fact that it shares a significant amount of hardware resources between
the cores (caches, memory controllers, main memory, interconnect and access to in-
put/outputs (I/O) and other peripherals).

COTS multi-cores offer significant advantages, but they are by design not suitable
for use in RT-CPS. This is mainly due to the unpredictable nature of application exe-
cution on these processors. An application in RT-CPS typically comprises several tasks
with timeliness requirements. To be able to meet those requirements and provide
guarantees, it is then essential to know apriori the maximum amount of processing
demand for each task. This maximum amount, denoted as the Worst-Case Execution
Time (WCET) depends on various factors including application inputs, hardware ar-
chitecture, tasks that are concurrently scheduled on the other cores in a multi-core
processor, etc.

The Certification Authorities Software Team (CAST) examined multi-cores (specif-
ically dual-core processors) and identified issues that could affect the safety and per-
formance of any software related to aircraft systems when executed on such proces-
sors [Fa1 2014]. The paper clearly identifies shared resources as a source of interfer-
ence which leads to unpredictability in estimating WCET. It also presents a list of
experiments that must be performed and results that need to be shown before using
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a multi-core hardware for safety-critical applications. Thus, estimation of WCET on
multi-cores is a major challenge for adoption of these platforms for RT-CPS.

The goal of this paper is to provide an insightful summary of the state-of-art tech-
niques that have been developed to obtain WCET estimates on multi-cores. There have
been several research efforts in the past to address this problem. These can be broadly
classified into two main categories based on the aspect of the system they modify:
hardware and middleware. Hardware refers to physical components that make up the
processor. Middleware serves as a glue logic between the hardware and software (e.g.,
operating system, compilers, hypervisor, etc.). Depending on the modifications done to
these aspects for WCET estimation, we classify the research efforts in this area as
follows.

1. Custom hardware and unmodified middleware,
2. COTS hardware and unmodified middleware, and
3. COTS hardware and modified middleware.

The structure of the remainder of the paper is as follows. A brief introduction to
COTS multi-cores, WCET analysis and challenges in estimating WCET is presented
in Section 2. Sections 3, 4 and 5 discuss in detail, contributions to each research cate-
gory listed above. Each section begins with an introduction to the respective research
category, followed by various contributions to that category, including a description of
implementation and analysis of the results. Finally, Section 6 concludes this paper and
discusses the open problems and future directions.

2. BACKGROUND - MULTI-CORES
2.1. Generic COTS Multi-core Architecture
“Multi-core is a design where a single processor has the core logic of more than one
processor” [Binstock 2012]. The generic architecture of a multi-core is shown in Fig-
ure 2 which has ‘n’ cores with each core having one level of private cache (local to
the core and represented as private L1 cache in Figure 2). All the cores share at least
one level of cache (accessible to all the cores and represented as Shared L2 cache in
Figure 2). Finally, there is a system interconnect which helps in the communication
between the cores and the Double Data Rate (DDR) main memory. Let us consider an
example COTS multi-core, in particular, the Freescale P4080 shown in Figure 1, to
understand the architectural features. The P4080 processor has eight e500mc cores,
each of which is pipelined and superscalar.

The e500mc core integrates two instruction units, one floating point unit and
one load/store unit to process data and instructions. The core also includes on-chip
first-level data and instruction Memory Management Unit (MMU), a second-level uni-
fied MMU and two levels of on-chip cache memories. The instruction unit interfaces
the system interconnect and L1 instruction cache and is used to buffer instructions
that need to be executed. Memory unit consists of the MMU and a cache hierarchy.
MMU consists of Translation Lookaside Buffers (TLB) that accelerate the virtual to
physical addresses translation.

Caches are on-chip memories used by the processor to reduce the average time
to access data and instructions from DDR memory. Caches may be implemented as
independent or unified for handling data and instructions. Data caches are usually
arranged as a hierarchy of several levels (L1, L2 and so on). The e500mc core has
separate 32-KB, 8-way set associative L1 data and instruction caches. It also includes
a 128-KB unified, 8-way set associative L2 cache. Whenever there is a write or read
request to a location in the DDR memory, the initial step is to check the caches. If the
requested content is already present in the cache, then the processor directly reads
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Fig. 2. Generic multi-core processor architecture

or writes to the cache. This is termed as a “cache hit”. On the other hand, when the
cache does not have the data it is termed as a “cache miss”, and the requested data is
brought into the cache from either the next level of caches or DDR memory. To create
space for new data upon a cache miss, the caches may need to evict some existing data
especially when they are full. This is referred to as the “cache replacement policy” that
guides the eviction process. Many cache replacement policies have been developed such
as First In First Out (FIFO), Most Recently Used (MRU), Least Recently Used (LRU),
etc. [Podlipnig and Böszörmenyi 2003].

System interconnect forms the infrastructure for connectivity and enables to im-
plement multi-core systems that are coherent. For example in P4080, it is termed as
“Corenet Coherency Fabric” (CCF), which is a bus infrastructure to interconnect cores,
caches, memory subsystem, I/O devices and other peripheral devices.

Multi-cores possess another level of cache beyond the system interconnect that facili-
tates sharing of data across the cores. For example, in P4080 this is termed as “Corenet
Platform Cache” (CPC). The CPC functions as a general purpose cache and connects
CCF to the memory controller. It is 1-MB and 32-way set associative. When data is
shared between the cores and as a consequence there are multiple copies of data in
the core specific caches, then the coherency protocol maintains consistency between
these copies of data. P4080 supports MESI (Modified/Exclusive/Shared/Invalid) based
coherency protocol [Papamarcos and Patel 1984].

Caches can be configured to handle data in two ways: inclusive and exclusive. For
an inclusive cache, data in any lower cache level must also be present in every other
higher level. On the other hand, exclusive caches do not require the data in L1 to be
present in the other levels.

The memory complex of COTS multi-cores typically consists of DDR main memory
and its controller. The purpose of a memory controller is to manage the flow of data
to and from the DDR memory. It has digital logic that is required to read, write and
refresh data in the DDR memory. As the number of cores increase, the controller should
also manage requests from different cores by arbitrating among them. For example in
P4080 two independent DDR memory controllers are connected to two DDRs each and
handle requests from the eight cores.

DDR memory typically consists of a set of banks that are independent of each other.
Each bank is made up of a 2-D array of rows and columns with buffers for each row
and column. The basic commands that are issued to any DDR device are read, write,
precharge and refresh. The time to service these requests depends on the status of
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the row that is intended to be accessed. If the row to be accessed is open then the
request is served immediately; otherwise, that particular row has to be opened before
serving the request. Requests can transfer data in bursts and the minimum size of the
burst that can be transferred is called as burst-length. DDR devices have the capacity
of transferring data both in the positive as well as negative clock edges, and hence a
single burst of data transfer consumes time equivalent to half the burst length. If a
memory request arrives and if it does not target the row that is opened, a precharge
(PRE) is issued which closes the currently active row to open the row that is requested.
A row in the DDR is also referred as a page. Every row has a buffer associated with
it which can function with two different policies: close-page and open-page. Open-page
policy leaves the row open after access to it, whereas close-page policy closes the row
after completion of the access. DDRs work by holding the memory value as charge
in capacitors and hence the charge drains over a period of time. This discharge is
compensated by periodic refresh (REF) operations that restore it. A memory rank is a
collection of DDR chips that are connected to the same chip select such that they can
be accessed at the same time.

2.2. WCET Analysis
Consider the application that inflates airbags when a car is involved in an high-impact
accident. For safety during a car accident, the airbags need to inflate within a specific
time interval. The airbag crash sensor needs to pass information to the controller about
a crash, and the controller, in turn, needs to respond by inflating the airbags. Thus this
application comprises several smaller tasks that perform specific activities like sens-
ing, control, and actuation. One of the key components in the response time of an appli-
cation is the time the software program takes to execute on the allocated hardware and
perform various tasks. In our example, this software program may for instance monitor
the values from the crash sensors, execute a control loop to determine whether a crash
has occurred, and eventually send control actions to the actuators. Further, since this
application is safety-critical in nature, it is essential to have knowledge on the WCET
of these tasks at design time so that the designer can allocate sufficient resources to
the application. If the WCET of tasks can be accurately estimated at design time, then
the worst-case response time of the safety-critical application can also be estimated.

System developers rely on either executing the task and measuring the execution
time under various operating contexts or performing static code and hardware analy-
sis, to obtain a WCET estimate at design time. Static analysis typically results in esti-
mates that are pessimistic when compared to the actual WCET, mainly because of the
complex nature of modern hardware and software. On the other hand, measurement-
based approaches may have a scenario wherein the maximal observed execution time
is less than the actual WCET. This is because in a real world scenario it is practically
impossible to verify the entire input space and all possible hardware states for every
task. Different inputs may cause a task to execute differently and hence may alter its
execution time. Also, the hardware states of caches, processor pipelines and interrupts
may also affect the execution time of the task. In the following two subsections, we will
briefly summarize the techniques used in these two approaches for WCET estimation.

2.2.1. Static Analysis Methods. Static code and hardware analysis is a classical approach
for estimating the WCET of a task that does not require the task to be executed on the
hardware. Instead, it takes the task as input along with annotations from the user,
finds all possible control flow paths, combines control flow and an abstract hardware
model and estimates an upper bound to the WCET of the task. A typical example of
this method is static cache analysis, wherein the process tries to predict the contents
of cache at every instant of task execution and arrives at a particular solution for
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determining the statistics of cache hits and misses. This analysis is usually hard in the
sense that it requires accurate knowledge of all possible task inputs that can result in
a different number of cache hits and misses.

Static analysis depends on an abstract hardware architecture model to estimate
hardware states during task execution. The most common hardware model for multi-
core static analysis is as shown in Figure 2. Each core has at least one level of private
cache; there is at least one level of shared cache and finally, a shared bus connects the
processor to the DDR memory. Further, these analyses also make some assumptions
on every component in the architecture. For instance, the shared bus can be assumed
to use Time Division Multiple Access (TDMA) arbitration scheme or caches can be as-
sumed to use LRU replacement policy. These assumptions are mainly for the purpose
of simplifying the analysis, although some of them may not be very realistic. For in-
stance, most COTS multi-cores do not use LRU cache replacement policy because it is
very expensive (time and memory) to implement.

The steps in static analysis techniques begin by defining the processor model. After
defining the processor model, the task to be executed is analyzed. A control flow anal-
ysis is performed with the help of annotations from the user. Annotations are general
descriptions of memory layouts, nature of the input to programs, bounds on loops, etc.
Control flow analysis determines how the control flows in the task by excluding infeasi-
ble paths or finding the frequency of execution. After analyzing the task the processor
state is analyzed by performing cache analysis, pipeline analysis, branch analysis and
loop analysis. Pipeline analysis tries to anticipate the task’s behavior in the proces-
sor pipelines. Cache analysis tries to predict the instructions and data that would be
cached when the task is executed. Loop analysis bounds the number of times a loop
might get executed. Finally, branch analysis tries to predict the branch that would pos-
sibly be selected when the task is executed. When all the aspects of the analysis are
completed the values are input to an Integer Linear Program (ILP) solver. This last
stage of processing is called Implicit Path Enumeration Technique (IPET) analysis in
which the results of all the previous stages are combined together with information
about infeasible paths in the task to arrive at a WCET estimate.

2.2.2. Measurement-Based Methods. Measurement-based approaches execute tasks on
the given hardware for an input state space and determine the distribution of the ob-
served execution times. The most common approach to obtaining measurements is to
execute the task repeatedly with many possible input states and instrument the code
to collect timestamps for determining the execution time. Measuring execution times
is also done externally by using hardware debuggers and tracer units that can collect
the timestamps with minimal intrusion on the executing task. Measurements alone
are not useful for safety-critical applications that require timing guarantees, as they
do not consider the complete operating context such as all possible hardware states or
the entire input domain. Therefore they are combined with some code analysis tech-
niques such as value, loop bound, and path analyses to improve the confidence in the
resulting WCET estimates. The main advantage of measurement-based methods over
the static analysis methods is that they do not need a hardware model for analysis.
This is a significant advantage because modern hardware architectures are too com-
plex to be amenable to precise modeling. Another advantage of measurement-based
methods is that the resulting WCET estimates are less pessimistic when compared to
the estimates obtained by static analysis methods. However, because measurement-
based methods are not guaranteed to consider the complete operating context of the
task, the resulting estimates may be incorrect. Few examples of tools that implement
measurement-based methods are SymTA/P [sym 2013], Rapitime [rap 2004], etc. The
Rapitime tool, for instance, provides several features such as WCET estimation, iden-
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tification of program code that is on the worst-case path, generation of execution time
profiles to illustrate variability in code executions, and path analysis to provide an
exact model of the software code structure.

2.3. Challenges in Estimating WCET on multi-cores
The challenges in estimating WCET on multi-cores have been discussed in several
studies [Shekhar et al. 2012], [Shah et al. 2014], [Dasari and Nelis 2012], [Pelliz-
zoni and Caccamo 2010], [Cullmann et al. 2010], [Shah et al. 2013], [Radojković et al.
2012], [Pellizzoni et al. 2010a] and [Bate et al. 2001]. We now summarize these chal-
lenges below:

1. Shared caches and their controllers,
2. Shared interconnect,
3. Shared memory controller,
4. Power saving strategies,
5. System interrupts,
6. TLB misses, and
7. Hardware prefetching.

In the following paragraphs we discuss these challenges briefly.

Shared caches and their controllers. All cores share at least one level of cache in a
COTS multi-core as shown in Figure 1, allowing efficient sharing of data when inter-
dependent tasks are running on different cores. Consider an example of two tasks
executing in parallel on two different cores of P4080 (co-running tasks). There can
exist a scenario when both contend for the same line in the shared cache, even though
they share no instructions or data. This is because multiple locations in memory can
map to a single cache line. In such a scenario, WCET can depend on how frequently
the task accesses the cache, as every access can potentially evict useful data of the
other task. If data is removed from the cache, it needs to be fetched again from the
DDR memory which increases the task’s execution time. Further, even if the two tasks
do not access the same cache line, the cache controller which is shared between the
cores can delay one of the tasks while serving the other. This also increases the task’s
execution time. Thus interference arising from co-running tasks due to shared caches
has the potential to impact a task’s WCET on a multi-core platform.

A simple strategy to overcome this interference is to partition the cache such that no
two cores can access the same cache line. This approach is effective only when indepen-
dent tasks are running on the different cores. But as more applications are parallelized
to exploit the multi-cores better, sharing data through caches will significantly reduce
the response times as the number of memory accesses decrease. Hence shared caches
are important to exploit parallelism offered by multi-cores although they affect timing-
predictability. Also, the contention at the shared cache controller cannot be solved by
partitioning. The work by [Gracioli et al. 2015] provides a survey on all cache manage-
ment techniques for real-time systems. In our survey we focus only on those techniques
relevant for multi-cores.

Shared Interconnect. When there are multiple cores with a shared memory unit,
there must be a common communication link that connects all these cores to the mem-
ory. This is the system interconnect (CCF in Figure 1). Although most multi-cores
have high bandwidth for the shared interconnect, there exists contention as the access
to this interconnect is not only dependent on the cores but also on other architectural
features such as the caches and the traffic due to coherency protocol. Also, bounding
this contention may be hard as the chip manufacturers do not provide extensive details
on the architecture of the interconnect or the arbitration mechanism it uses.
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Analysis of the shared interconnect depends on accurate knowledge of the intercon-
nect architecture. When there is a lack of information, WCET estimation is performed
using assumptions that may or may not be realistic. For instance, the arbitration
scheme for the shared interconnect is assumed to be Time Division Multiple Access
(TDMA) in many methods.

When a system maintains both private and shared memory resource such as caches,
any change of data at any location needs to be updated in every other memory resource
where a copy of this data is held. The coherency mechanism keeps all these copies
in harmony with each other by continuously updating every change. Multiple cores
updating shared data in their respective local caches can cause heavy coherency traffic
on the interconnect, which in turn can cause a delay in the execution of applications.

Shared Memory Controller. The DDR memory controller (two 64-bit DDR2/DDR3
memory controllers shown in Figure 1) is essential for controlling the interaction of the
cores with the memory units. The number of memory controllers is usually lesser than
the number of cores, primarily because of packaging constraints that is limited by the
number of pins available [Abts et al. 2009]. For example, in the P4080 processor, there
are 8 processing cores. This uneven distribution of the number of cores to the controller
itself is a reason for contention. Whenever there are multiple cores simultaneously
trying to access the memory, there may be contention. Also the arbitration scheme
employed by COTS controllers is mostly unknown, which increases the difficulty in
the analysis of such controllers for WCET estimation.

Power Saving Strategies. Most modern processors have reached operating speeds
that are almost saturated and are now primarily focused on reducing the power con-
sumption. Hence a separate system is dedicated to implementing power saving strate-
gies for the processor. One of the simplest strategies used to save power is to change
the frequency of the processor. Reducing the frequency naturally reduces the operat-
ing voltage and hence the total power consumed. Such optimization techniques may
cause unpredictability in the execution of tasks on the cores, and therefore can impact
WCET estimation.

System Interrupts. A system might have interrupts that cannot be prevented and
these interrupts can impact task executions. A simple scenario is when a processor
heats up, it may either be turned off or taken to a system management mode that
would bring it back to normal execution. This consumes processor cycles and hence
must also be taken into account when estimating the WCET.

TLB misses. Virtual memory is an important aspect of most multi-cores. A dedicated
Memory Management Unit (MMU) is assigned to translate these virtual memory ad-
dresses to physical ones. The cores refer to virtual memory addresses which in turn
are translated to physical addresses by the MMU. MMU has a cache called Transla-
tion Lookaside Buffer (TLB) that stores the recent translations. The flip side of using
this buffer is that if there is a TLB miss, the translation request needs to be sent to
the DDR memory and then mapped back. This would incur additional cycles in the ex-
ecution of a task. Since this cache is shared, it becomes hard to predict the eviction of
translations from different cores. These evictions cause unpredictability and therefore
also impact WCET.

Hardware Prefetching. Prefetching allows the processor to fetch blocks of instruc-
tions and data before the task actually requests for them. This is generally due to
speculative techniques such as branch prediction and cache block prefetching. Specu-
lation may on an average improve the execution time of tasks if it manages to predict
the future correctly on a regular basis. But it also negatively affects WCET of tasks,
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Fig. 3. Work towards predictable WCET

because for scenarios when the speculation is wrong, the resulting execution time also
includes the misprediction penalty.

2.4. Research towards Time-Predictability on Multi-cores
As mentioned in Section 1, we classify the existing research towards obtaining a WCET
estimate for tasks on multi-cores into three categories (described in Figure 3) based on
the aspect of the system that it intends to modify. These categories are as follows:

1. Custom hardware and unmodified middleware,
2. COTS hardware and unmodified middleware, and
3. COTS hardware and modified middleware.

The first category, custom hardware and unmodified middleware focuses on building
custom components of the multi-core architecture on Field Programmable Gate Arrays
(FPGAs), without making any changes to the middleware components. Specifically,
this category includes research on designing predictable caches, memory controllers
and system interconnects on FPGAs. Projects such as MERASA [Paolieri et al. 2013],
CoMPSOC [Hansson et al. 2009] and parMERASA [par 2012] fall into this category.
The primary research problem this category addresses is the modifications required
at the hardware level to estimate WCET with minimum pessimism, while assuming
that the application and the middleware components remain unchanged. Note that al-
though these studies use FPGAs to illustrate their hardware designs, the final designs
could always be transformed into ASICs. Within this category, we classify the contribu-
tions into four subcategories based on the hardware component that is designed. These
subcategories are caches, scratchpads, memory controllers, and system interconnects.

The second category, COTS hardware and unmodified middleware focuses on re-
search that develops WCET estimation techniques for COTS multi-cores. This category
of research includes studies on cache analysis, interconnect analysis, pipeline analy-
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sis, etc. Although these methods do not require any modifications to the hardware or
middleware components, they make simplifying assumptions on the architecture that
may or may not be valid for COTS platforms. The primary studies of interest concern-
ing this survey are those that provide specific solutions to overcome the challenges in
analyzing multi-cores. We further subdivide this category of research into four subcat-
egories based on the aspect of hardware that the work analyzes. These subcategories
are cache analysis, cache locking and partitioning, DDR controller analysis and shared
interconnect analysis.

The final category of research COTS hardware and modified middleware does not
require any modifications to the hardware (i.e., considers COTS multi-cores), and in-
stead focuses on modifying the middleware components to obtain predictable WCET
estimates. An example of work in this category is the implementation of fork and join
operation within the OS where a task is segmented into smaller subtasks and executed
in components to obtain predictable execution pattern.

In the following three sections, we discuss each category in detail. For each study,
we present a brief introduction to the work and explain how it addresses the WCET
estimation challenges. Thereafter we present some implementation details of the study
and discuss experimental results.

3. CUSTOM HARDWARE AND UNMODIFIED MIDDLEWARE
This section presents the state-of-art in building custom hardware to provide pre-
dictable task execution. It presents the various techniques employed in designing
hardware architectural features of the multi-core specifically caches, memory con-
troller, and system interconnect.

3.1. Caches
In this subsection we discuss the various solutions presented for designing predictable
caches in hardware (box 1 in Figure 3).

3.1.1. Probabilistic Caches. The source of unpredictability in shared caches on multi-
cores is its replacement policy. This work introduces the Random Placement (RP) pol-
icy along with the existing Random Replacement (RR) to estimate the WCET of a task
which is associated with an occurrence probability [Kosmidis et al. 2013]. The advan-
tage of this policy is that every memory access is associated with a probability of hit or
miss independent of the history of memory accesses. This probability depends on the
total number of cache lines and also its associativity. By randomizing the placement of
data in the cache, this approach computes the probability of hits and misses for every
memory access in the task and obtains a probabilistic WCET estimate [Kosmidis et al.
2013].

Implementation: Hardware implementation of RP requires a Pseudo-Random Num-
ber Generator (PRNG) and a hash function. The hash function takes a memory address
and a random number (provided by PRNG) and provides a cache mapping. To reduce
the complexity of the hardware, the traditional cache design is kept unmodified with
the PRNG and hash function implemented as separate units outside the cache.

Experiments and results: Experiments are performed using SoCLib simulation
framework with binaries of powerpc [Consortium et al. 2008]. A processor with 4-
stage pipeline and a memory hierarchy with separate L1 data and instruction cache
and a DDR memory is selected for experiments. Both caches are set associative and
implement the RR and RP policies. The experiments are run with EEMBC benchmark
suite [Poovey 2007]. The performance of RR+RP cache is compared against modulo
placement + LRU replacement cache. For 1 way and 256 set cache (direct mapped), the
instructions per cycle for RR+RP cache is 0.234 and LRU+modulo cache is 0.613. As the
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associativity increases, the performance of RR+RP cache matches that of LRU+modulo
cache. The WCET of set associative cache is also compared to that of a cache which has
direct mapping. Although a fully associative random replacement cache provides the
lowest WCET values, the RP+RR design offers the best trade-off between hardware
complexity and WCET.

3.1.2. Performance Enhancement Guaranteed Cache (PEG-C). A hardware cache imple-
mentation designed by [Huangfu and Zhang 2014] improves the average-case perfor-
mance while providing predictable access to caches. This is achieved by counting the
number of cache hits and misses along with a cache preloading algorithm. The cache
preloading algorithm loads the cache with instructions to avoid the initial cold misses.
The counters record at run-time the statistics of hits and misses and provide access to
the cache only when the difference between hit and miss counters is positive. When-
ever the difference is not a positive value, the memory accesses are taken to the DDR
while still loading the cache until the difference becomes positive.

Implementation: The architecture uses existing cache design with two counters to
monitor the statistics of cache hits and misses. To avoid cold misses the cache blocks
are preloaded with data by exploring all possible paths in the task. Once a task starts
to execute the counters are incremented based on hits and misses that occur. When
the value of the miss counter is greater than the hit counter, the cache is disabled and
every access is directed to DDR memory. Simultaneously, the cache is loaded with the
data that is accessed. The hardware remains in this state until the difference between
hits and misses becomes positive.

Experiments and Results: Trimaran simulator has been used to implement and test
the architecture with Mediabench benchmark [Lee et al. 1997] [Chakrapani et al.
2004]. The experiment to show the performance benefit of using this cache design mea-
sures the minimum number of instructions required to prevent the cache access from
being disabled. From the experiments performed it is observed that in most bench-
marks the minimum number of instructions required is 16. Another experiment to
compare the performance of the proposed architecture with locked cache is performed.
It is observed that the proposed architecture provides significant performance benefit
when compared to cache locking for all the benchmarks.

3.1.3. Discussions. This section discussed hardware solutions that address the unpre-
dictability in the access to shared caches. Two studies on building cache architectures
on FPGAs have been reviewed. One of them presents a probabilistic approach [Kos-
midis et al. 2013], whereas the other study proposes a cache architecture with hit and
miss counters [Huangfu and Zhang 2014]. The drawback of using RR and RP policies
in RTA have been identified by Reineke [Reineke 2014]. It shows that the probability
of hits that are computed for the analysis are not independent. This means that the
convolution of different execution time values obtained is not possible with randomized
caches and hence is not favorable to be used in RTA. Although these studies contribute
to building a predictable cache architecture, their implementations are limited to only
a few aspects of the cache architecture. From the challenges described in Section 2.3,
we can see that the unpredictability from the shared cache controller and coherency
mechanism have not been addressed by any of these studies. To obtain predictable
accesses to shared caches, these problems must be resolved.

3.2. ScratchPad Memories (SPM)
To avoid the unpredictability arising from using shared caches, researchers have pro-
posed not to use them and instead have local faster memory termed as scratchpads.
These are lightweight, low-power and high-speed memory units that reside close to
the processor. There are two methods by which functions are loaded into the scratch-
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pads. They are static and dynamic. This subsection discusses the various contributions
towards predictable data loading into scratchpads (box 3 in Figure 3).

SPMs were identified as a hardware alternative to caches for embedded systems by
Banakar et.al. [Banakar et al. 2002]. This work motivates the use of SPMs by provid-
ing a basic architectural implementation and comparing caches and SPMs of different
sizes with respect to area, energy and performance (SPMs performs better than caches
on all comparisons). However, this work does not explicitly address the major challenge
in using SPMs, which is to decide what content will be loaded into this memory and
when will it be loaded. A comparison of scratchpads and locked caches was provided
by Puaut et.al. [Puaut and Pais 2007] to identify the scenarios that would degrade the
performance of each of these memories. The study concludes that SPM performance de-
grades whenever there are larger functions (function size still less than the size of the
scratchpad) to be loaded and hence there is not enough space to load more functions
or the function itself is larger than the scratchpad’s size. On the other hand, caches
with larger line size suffer from a problem where many unused data gets locked in the
cache and hence the space for useful data reduces.

3.2.1. Static SPMs. Static SPMs have fixed data allocation, i.e., their contents cannot
be changed at run-time. The work by Suhendra et. al. [Suhendra et al. 2005] proposes
three techniques to allocate data statically to the SPM. First is to formulate an ILP
which considers all possible program paths and obtains the data to be loaded. Second is
to use branch-and-bound search algorithm to find the best possible allocation by elim-
inating those paths which are infeasible in a task execution (this method is expensive
due to the exhaustive search involved as the number of tasks increase). Finally, the
third method is to reduce the complexity by using a heuristic where infeasible paths in
the program are removed and then from the remaining paths, the one which leads to
WCET (technique is discussed in [Chen et al. 2007]) is considered and data is allocated
from it. This step is repeated till the SPM is fully filled. Another study by [Takase et al.
2010] proposes three different static loading scenarios. First is where every task has
a partitioned memory space in the SPM. Second is where an executing task uses the
entire SPM, and finally, the third where hard real-time tasks can use the space of non-
real-time tasks. An ILP is formulated for each case which decides both on partitioning
the SPM and also loading data into it.

3.2.2. Dynamic SPMs. Dynamic SPMs have data allocation that is managed at run-
time. A Dynamic Instruction SPM for multi-cores was proposed by [Metzlaff et al.
2011]. The primary idea of this work is that whenever there is a function call, the
pipeline is stalled and all the instructions of that function are loaded into the scratch-
pad before execution. This idea makes sure that there are no more DDR memory
accesses performed during the function execution which avoids any unpredictability
arising due to other architectural features of the processor.

Another study targets a dynamic SPM that uses a memory management unit to
manage the loading of data into the dynamic partitions in the SPM [Wasly and Pel-
lizzoni 2013]. The OS partitions the SPM into three segments. The first segment is of
fixed size and is used to hold the data related to the OS itself. The second and third
partition sizes can be dynamically varied by the OS based on the size of the function
being loaded into the SPM.

The work by [Liu and Zhang 2012] explores different configurations of the SPM
with regards to using it with multi-core architectures. In particular, it compares single
against two-level SPM, unified against separate, and dynamic against static loading
and obtains the merits and demerits of each scenario. Conclusions drawn from this
work are that multi-level SPMs reduce WCET in most cases, separate SPMs provide
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Fig. 4. WCET comparison of memory modules [Kuo et al. 2013]

better performance than unified and finally, dynamic loading helps in using the SPMs
more efficiently to manage run-time demands.

The study by [Kim et al. 2014a] proposes two dynamic loading techniques for
scratchpads in multi-core architectures where the entire execution depends on con-
tents in the SPM (DMA is used to load the SPM with functions from DDR whenever
they are requested). The first technique is to find the optimal method to map functions
to different portions of the SPM. An ILP is formulated which iteratively determines
the best possible function mapping using a control flow graph of the program to be ex-
ecuted. The disadvantage of this method is the exponential complexity as the number
of functions and size of SPM increases. A simpler heuristic (reduced complexity) has
been proposed where two different strategies are used to obtain the mapping. First is
by mapping different functions to separate spaces on the SPM and then merging them
to fit inside the SPM. Second is to map only one function to the SPM and then follow
an iterative process to partition the SPM space to different functions.

3.2.3. TickPad Memories (TPM). Another solution presented to address the unpre-
dictability in shared caches is to use tickpad memories [Kuo et al. 2013]. Tickpads
are identical to caches and scratchpads as they provide quick access to memory, but
are only used with synchronous programming languages such as Esterel [Berry and
Gonthier 1992] or Pret-C [Roop et al. 2009].

Implementation: A synchronous language program is analyzed and a graph is gen-
erated which provides information on concurrent control flow and context switching
points [Kuo et al. 2013]. Using this graph, data allocation decision to the tickpad is ob-
tained. With this information, the memory access time is computed and the execution
time of the program in the worst-case is estimated.

Experiments and results: A hardware synthesis of tickpad memory is provided and
its performance is compared to scratchpads and caches. The benchmarks selected
for experiments are both synthetic and standard (crc and binary search). The work
presents a comparison of worst-case time to access the tickpads against scratchpads
and direct mapped caches. From the results shown in Figure 4, it can be seen that the
WCET for a tickpad is always lower than either of these alternatives due to its simpler
architecture.

3.2.4. Comparison of Memory Modules. The inequality between the clock speed of a pro-
cessor and the time to access DDR memory requires the presence of a memory unit
that is not just faster, but also closer to the processor. The initial solution was to have
a cache architecture that is on-chip so that the delay in accessing data/instructions is
reduced. Caches are designed having multiple levels with at least one of them shared
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among the cores. This required coherency protocol to maintain the consistency of data
in the caches, that lead to an increased processing overhead. Also, sharing of caches
created the possibility of useful data of one core being evicted by another. To avoid
these complexities SPMs were introduced. Data allocation and its replacement on
SPMs are software guided and decisions are taken at compile-time. This improved
their average-case and worst-case performance when compared to caches. Unfortu-
nately, SPMs do not allow sharing of data between the cores, which is a key require-
ment to exploit the parallelism of multi-core architectures in many applications. In the
absence of efficient sharing mechanism, all data sharing must happen through DDR
memory, which can be very time-consuming. Tickpads offer a trade-off between caches
and SPMs by providing dynamic loading capabilities that are statically controlled. This
allowed them to perform better than SPMs, but they still do not provide support for
efficient sharing of data between the cores. Thus, the open problem in this category
would be to develop memory units that would be predictable and still offer efficient
data sharing capabilities.

3.3. Memory Controllers
Another hardware resource that is shared in multi-cores is the memory controller.
This unit is a digital circuit that controls the data flow in and out of the DDR mem-
ory. The bottleneck in obtaining predictable access to memory is hampered due to lack
of information about the architecture of COTS memory controllers and multiple cores
sharing fewer controllers. This poses a challenge in the estimation of WCET. In the
following sub-sections, we shall discuss various contributions towards designing pre-
dictable memory controllers (box 4 in Figure 3). Note that the Joint Electron Device
Engineering Council (JEDEC) provides a set of operational timing standards that de-
vice manufacturers need to adhere while manufacturing DDRs. Hence the controllers
designed for these DDRs must also comply to these timing standards.

3.3.1. Analyzable DDR Controller. The work by [Paolieri et al. 2009] proposes a real-time
controller implementation which performs round-robin arbitration between the differ-
ent cores trying to access the DDR memory. This prevents the unpredictability in mem-
ory access due to inter-core interference. Interference delay is upper bounded using an
exhaustive analysis based on the timing constraints provided by JEDEC standards.
As an additional feature, to avoid interference between the different tasks executing
on the same core, this implementation provides one buffer per task.

Analysis and Implementation: This implementation analyzes the tasks and obtains
an upper bound for every memory request. To bound the delay experienced by a mem-
ory request, this work considers every other request that was previously issued (based
on whether it is a read or a write request). For tasks executing on different cores, this
work bounds the delay based on the round-robin arbitration policy. To account for the
delay due to DDR memory refresh operation (predictable refresh), the start of the task
execution is synchronized with the occurrence of a refresh. The work models a mem-
ory controller for a 4-bank, 256MB x 16 DDR memory and simulated using DRAMsim
framework [Wang et al. 2005].

Results: WCET estimates are determined for different scenarios such as 1) shared re-
source interference with private memory controller, and 2) controller shared between
real-time task with memory and on-chip interferences. The collision avoidance algo-
rithm from Honeywell Corporation is used for testing the design. This design computes
tight WCET estimates when compared to the estimate by Rapitime [rap 2004], when
the algorithm is executed in its highest memory demanding workload.

3.3.2. Reconfigurable Real-time DDR Controller. A reconfigurable real-time DDR con-
troller was proposed by Goossens et.al. [Goossens et al. 2013]. Since the architec-
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Table I. Real-time Memory controllers

Controller Page
policy

Arbitration
Policy

Rank
Scheduling

Bank
Mapping
(Interleaving
vs
Private)

Critical/
Mixed
critical

Predator Close
row CCSP - Interleaved Critical

Reineke Close
row TDM - Private bank Critical

Wang Open
row Round robin Rank

hopping Interleaved Non-critical

Yonghui Li Close
row Round robin - Interleaved Mixed

critical

Goossens

Cons
ervati
ve
open row

TDM - Interleaved Mixed
critical

Leonardo Close row Fixed priority Rank
switching Private bank Mixed

critical

Akesson Close row CCSP - Interleaved Mixed
critical

ROC (pellizioni) Open row Round robin Rank
switching Private Mixed

critical

Hokeun Kim Close/Open Fixed Priority - Private Mixed
critical

Analyzable
Memory
controller

Close row Round robin - Interleaved
bank Critical

ture is reconfigurable, a trade-off has been obtained between the provided bandwidth,
response time for a memory request and power consumption. The controller uses
TDMA arbitration (this module is also reconfigurable at run-time). This protocol al-
lows changing the allocation of TDMA slots at run-time without losing out on timing-
predictability.

Implementation: A System-C level implementation of the controller is presented.
The controller architecture front-end is divided into three blocks of which the first
block splits the requests into smaller fixed size requests, the second one groups the
smaller size requests and converts it to the size the back-end needs and finally buffers
to hold the output from the front-end. A shared interconnect connects this front-end
to the physical layer (PHY) which forms the back-end that physically connects the
controller to the DDR.

Analysis: The proposed architecture is predictable due to the implementation of two
important features. First is the grouping of memory requests into predefined mem-
ory command patterns to eliminate interference between memory requests. Second is
the use of TDMA arbiter for predictably switching between the different cores. The
controller in this implementation translates every memory request into a set of DDR
command patterns. The different patterns considered here are read, write, refresh, idle
and switch patterns. Switch patterns are no-operation commands that are required to
balance read and write pattern lengths. This work fixes the pattern length to be con-
stant and based on the scheduling mode, the maximum delay of every memory request
is obtained.

3.3.3. PRET DDR Controller. Another controller design that not only focuses on pre-
dictable memory accesses but also improves the worst-case latencies was proposed by
Reineke et.al. [Reineke et al. 2011]. The key aspect of this implementation is that it
considers the DDR memory as multiple devices that may be shared among several
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clients individually. It exploits the parallelism in the DDR memory by segregating the
physical address space of the device in accordance with ranks and banks. Refreshing
the DDR is performed by row accesses rather than actually sending a refresh com-
mand.

Implementation: Banks of the controller are issued with independent commands to
exploit bank-level parallelism. Closed-page policy is followed wherein the accessed row
is closed (precharged) before performing the next access. The front-end has buffers
that queues the requests from different cores. The back-end implements a modulo-
13 counter that provides access to the request buffers every 13 cycles. Meanwhile,
the back-end also has circuits that generate different DDR commands based on the
request from the front-end. Isolating the back-end with parallel access to multiple
banks of the DDR and controlling the refresh operation provides predictability in this
implementation.

3.3.4. Open Row DDR Controller. A predictable controller design by Krishnapillai
et.al. [Krishnapillai et al. 2014] focuses on using rank switching and partitioning
mechanism. Rank switching increases the utilization of the DDR and avoids the prob-
lem of write-read transition latency. Rank partitioning provides isolation by assigning
banks in the ranks to specific cores thereby providing independent accesses to the
banks.

Implementation: The memory controller is partitioned into front and back-ends but
the focus of this implementation is the back-end. The back-end of the controller has
a three level arbitration scheme. Level 1 arbiter prioritizes reads and writes over
precharge and activate commands. Level 2 arbiter alternates between the different
ranks and level 3 arbitrates among the cores within a rank. This 3-level arbitration
provides predictable access to the memory.

Results: The reads and writes are compared with the memory controller proposed
in [Paolieri et al. 2009]. It is observed that this design of controller on an average
provides 33% lower latency than the memory controller in [Paolieri et al. 2009]. The
WCET of a task for a 4 rank DDR device produces 5-35% lower latency than the con-
troller in [Paolieri et al. 2009].

3.3.5. PREDATOR. Another predictable controller design (PREDATOR), which com-
bines the properties of both static and dynamic controllers was proposed by Akesson
et.al. [Akesson et al. 2007]. The unique feature of this controller is that instead of send-
ing independent commands to the DDR, this controller groups and sequences several
DDR commands together. These are read, write and refresh groups. Predictability is
obtained by scheduling these groups of commands with a known arbitration scheme at
run-time.

Implementation: The memory controller consists of a network interface with request
and response buffers. This is connected to another module which has the arbiter,
command generator, and memory mapping. The arbiter uses predictable arbitration
schemes such as weighted round-robin or fair queuing to arbitrate among different
cores. The memory mapping unit converts the incoming logical addresses to physical
DDR addresses. The command generator is used to generate the DDR commands in
accordance with the access group that is being scheduled.

3.3.6. Comparison of Memory Controller Designs. The unpredictability in memory con-
trollers described in Section 2.3 has been addressed by the studies presented in the
above subsections. One of the common features in all these memory controller designs
is the use of TDMA or round-robin arbitration among the real-time tasks and cores. A
few of these works ( [Goossens et al. 2013] and [Krishnapillai et al. 2014]) rely on either
generating composable patterns (patterns of DDR commands) or analyzing the task to
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obtain the nature of memory accesses (open-row or closed-row) that can increase or
decrease the overhead in the memory controller operation.

Considering the state-of-art multi-cores that are clocked at several GigaBytes per
second, we not only need real-time guarantees with respect to timing behavior but also
increased performance to satisfy the growing demands in processing. Further, most
of these studies are simulations and hence there is a need for implemented designs.
Finally, the designed memory controller should be scalable with respect to the number
of cores, i.e., as the number of cores increase, the memory controller should be able to
provide similar performance and real-time guarantees for the system. Another aspect
to fulfill is the need for composable architectures which can reduce the pessimism at
the hardware level in estimating the WCET. Composable architectures are those where
the execution of an application remains unchanged irrespective of the presence of other
applications (inter-core interference problem mitigated). This essentially means that
when there are shared hardware resources, every shared resource must be able to
guarantee similar service for all applications in the system such that every application
can be analyzed independently [Rumpler 2006] [Hansson et al. 2009].

3.4. Interconnect Designs
Another source of interference in multi-cores is the system interconnect that is shared
among all the cores. In this subsection, we discuss the various designs of interconnect
(box 2 in Figure 3) and how they address the WCET estimation challenge that was
discussed in Section 2.3.

3.4.1. Probabilistically Analyzable Interconnect. Probabilistically analyzable interconnect
designs for multi-cores was proposed by Jalle et.al. [Jalle et al. 2014]. The design ob-
tains probabilistic WCET estimates using two arbitration policies: 1) Lottery arbitra-
tion and 2) Randomized-permutation. By randomizing the access to the bus, this work
associates a probability with every memory access and estimates WCET.

Implementation:
Lottery arbitration: In this arbitration technique, the Pseudo Random Number Gen-

erator (PRNG) generates a random number using which access is provided to one of
the cores. Random Permutation: Unlike the previous arbitration technique, in this the
PRNG generates a random permutation for all the cores that are contending for inter-
connect access.

Experiments and Results: For the proposed bus designs, execution times are observed
for programs from the EEMBC benchmark [Poovey 2007]. From the WCET estimate
it can be observed that the reduction in the WCET range with respect to determin-
istic arbitration (round-robin) is between 3.5% and 6.7% for lottery arbitration, and
between 1.5% and 9.6% for random permutation arbitration.

3.4.2. Predictable System Interconnect. The architecture of MERASA described in
Paolieri et.al. [Paolieri et al. 2013] proposes an interconnect design as shown in Fig-
ure 5, which follows a fixed pattern for cores to access the DDR memory. The design
has a two-level arbitration scheme: inter-core (arbitrates between different cores) and
intra-core (arbitrates within a core). The intra-core real-time arbiter has buffers for
each bank, wherein the memory requests from each core are sorted based on the
bank that it needs to access. For real-time tasks, First-In-First-Out (FIFO) arbitration
scheme is used and for all the other tasks, parallel out-of-order execution that targets
different banks is used. When there are multiple real-time tasks from different cores
trying to access memory simultaneously, a round-robin arbitration (inter-core arbiter)
is performed to provide predictable access to the interconnect.
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Fig. 5. Merasa - Real Time Interconnect [Paolieri et al. 2013]

3.4.3. Predictable Network on Chip (NoC) Designs. The previous two subsections discussed
the contributions towards a predictable system interconnect. In this subsection, we
discuss various contributions to NoC designs, which can be regarded as generalized
interconnect designs. System interconnects are synchronous and allow one transaction
at a time, have a central arbitration scheme, limited bandwidth, and low cost. NoCs
on the other hand forms the communication subsystem on an integrated circuit. It is
different from a system interconnect from the fact that it applies networking principles
and improves scalability and power efficiency of system designs. It allows pipelining of
requests, different architectures, transaction re-ordering, etc.

A summary of different NoC designs and its scalability was studied by Goossens
et.al. [Goossens and Hansson 2010]. NoCs have a constant performance to cost ratio,
i.e., the costs linearly depend on bandwidth and latency. The study concluded that
Time Division Multiplexed (TDM) router is the best-suited arbitration scheme that is
predictable, composable and also low cost to implement for NoC designs. The potential
future directions of work for NoCs are to improve its reliability and quality of service,
provide guaranteed performance, reduce complexity and increase portability of the
design.

A circuit switched NoC based on TDMA arbitration to be used in RTA was proposed
by Schoeberl et.al. [Schoeberl et al. 2012]. This work introduces a fast and efficient
(reduced complexity) hardware NoC design. It formulates an ILP to find a schedule
that provides equal bandwidth between all the cores connected to the NoC.

TDMA static scheduling assures guaranteed bandwidth and a fixed latency to trans-
mit data over the NoC. This simplifies WCET estimation. In this design, the routers
keep the schedule of the packets that are sent and hence collisions are avoided. The
router consists of multiplexers and registers that are compatible with a logic cell of the
FPGA. The output of the routers can buffer a single packet and the input is fed by the
multiplexer design.

A time-predictable TDMA memory arbiter for multi-cores was studied by Schoeberl
et.al. [Schoeberl et al. 2014]. Each core has a local interface to the NoC and the NoC
itself has an interface with the memory through a memory controller. The local inter-
face at the core has a local TDMA schedule. Whenever there is a memory request from
the core and the local interface obtains a TDMA slot, an acknowledgment is sent to the
core and the request is sent to the memory controller interface. At this interface, the
request is served using a handshaking policy. After the request is serviced, a broadcast
message is sent with the core identity tag to return the data back to the core.
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3.4.4. Summary of Shared Interconnect Designs. Above subsections presented solutions
that address the unpredictability in the access to the shared interconnect. The inter-
connect designs focused on either adapting the existing interconnect architecture or
generalizing this architecture to NoCs. The interconnect architecture based studies
either focused on a probabilistic analysis where the access to the interconnect is ran-
domized or used a two-level arbitration scheme that manages arbitration within and
between the cores. With the introduction of System on Chip, NoC designs have been
extensively favored. The advantages of NoCs over the system interconnect design are
its bandwidth, cost, and arbitration. NoCs for real-time systems has primarily focused
on TDMA arbitration. NoCs also provide a significant advantage in scalability of their
design, along with different possible communication flows between the cores and mem-
ory.

3.5. Discussions
The previous section discussed various solutions to address the challenges in WCET
estimation specifically in shared caches, controllers and interconnect. We now discuss
the practicality of these solutions and their contribution towards providing effective
solutions for WCET estimation.

Caches vs Scratchpads vs Tickpads: In general, caches are built to perform ex-
ceptionally well on an average-case for reducing memory access times. From the anal-
ysis of caches by Kosmidis et.al. [Kosmidis et al. 2013] and Zhang et.al. [Huangfu and
Zhang 2014], it can be concluded that caches are predictable when they are built with
Least Recently Used (LRU) replacement policy. Contradicting this fact, caches in most
COTS processors do not employ LRU. Instead, the implementation is pseudo-LRU,
which is less expensive to implement than LRU.

Table II outlines the functional differences in implementing the various memory
architectures that were discussed in this category; namely, shared caches, scratchpads,
and tickpads. Shared caches are always efficient for average case performance, while
not providing worst-case predictability. On the other hand, implementing scratchpad
memories provides fewer features with comparatively lower cost compared to caches,
but offers very high worst-case predictability. The void is filled by tickpad memories
that are loaded dynamically like caches, but the decision on what content to load is
taken statically. However, tickpads are designed only for synchronous languages like
Esterel and Pret-C.

Flexibility of the hardware designs: The proposed hardware modifications fo-
cus on either the shared cache, memory controller or the shared interconnect. In this
paragraph, we discuss how these hardware designs could be combined to obtain a pre-
dictable system. The solution to shared cache was either the use of a benefit counter or
a probabilistic cache. Both these designs had their drawbacks which were discussed in
Section 3.1.3. Also, the lack of a predictable shared cache controller makes it difficult to
combine these cache designs with other categories of work to obtain a fully predictable
architecture. The alternative to caches was scratchpads and tickpads. Tickpads can be
used only with synchronous programming languages. Hence, this restricts the use of
tickpads for a predictable generic architecture. SPMs, on the other hand, form a viable
option to serve not only as a fast memory but also offer predictability. Even SPMs have
some limitations as they do not allow sharing of data. Thus, none of these designs ad-
equately mitigate all the challenges when forming a predictable system. A robust and
a predictable memory controller should be scalable and should be independent of the
tasks being executed on the cores. In that sense, we can choose one of the several de-
signs described in Section 3.3. Finally, the shared interconnect design mostly follows
TDMA arbitration (which is predictable). The only difference is with the topology of
this interconnect. Hence any design of the interconnect discussed in Section 3.4 can be
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Table II. Caches vs Scratchpads vs Tickpads

Feature Shared Caches Scratchpads Tickpads

Size Small with
hierarchies Small and Fixed Small

Control Nature Hardware Software Hardware and
Software

Allocation Replacement
Policies

Allocation Algorithms
like ILP, Greedy

Tick
Precise
Allocation Device

WCET Estimation
Architecture model
required with
complex analysis

Simple to compute
tight WCET estimates

Simple WCET
estimates

Programming
Language

All languages
supported

All languages
supported

Only for
Synchronous
languages

Fig. 6. Comparison of WCET estimates [Liang et al. 2012]

combined with the caches and memory controller. Thus, from the available solutions,
we can use either SPMs or tickpads for high-speed memories, memory controller with
TDMA or round robin arbitration scheme, and a shared interconnect with TDMA ar-
bitration to obtain a predictable system. This system might not allow efficient sharing
of memory as every access to shared data should be directed to the DDR. Also, an-
other factor to keep in mind while combining such solutions is the composability of the
system to keep the pessimism in WCET estimation as low as possible.

From the list of WCET estimation challenges on multi-cores listed under Section 2.3,
we can see that there are contributions to build predictable caches, controllers and
interconnect. However the other challenges mentioned under Section 2.3 have not been
addressed.

4. ANALYSIS OF COTS HARDWARE AND UNMODIFIED MIDDLEWARE
This section discusses research that performs static analysis on COTS multi-cores and
obtains WCET estimates for the tasks.

4.1. Cache Analysis
This subsection presents research that addresses the unpredictability in the access to
shared caches by various analysis methods (box 5 in Figure 3).

4.1.1. Timing Analysis of concurrent programs. A timing analysis technique for a COTS
multi-core with at least one level of shared cache was proposed by Liang et.al. [Liang
et al. 2012]. The source of unpredictability addressed by this analysis is inter-core
cache evictions. The analysis determines the lifetime of all the concurrently executing
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tasks and finds the potential interference in the access to the shared cache. Once this
estimate is obtained, cache accesses are classified either as hits, misses, first access
miss or unclassified. Using this information along with static analysis approaches dis-
cussed in Section 3, WCET of tasks are obtained. This work is an extension of the idea
proposed by Yan et.al. [Yan and Zhang 2008].

Implementation: The following steps describe the proposed analysis framework.

1) Perform abstract cache analysis for L1 cache for every task [Ferdinand and Wil-
helm 1999].

2) Memory requests that miss L1 cache are further analyzed at the next level (L2).
3) Once the L2 cache analysis is performed using techniques similar to L1, an iter-

ative process begins. The iteration initially estimates the inter-core conflicts and
computes additional cache misses at the L2 level. It then repeats steps 1 to 3 until
there is no further change in the inter-core conflicts for all the tasks in the system.
The resulting task lifetimes are the WCET estimates which include the additional
delay due to inter-core interferences on the shared L2 cache.

This work advances the analysis by Yan et.al. [Yan and Zhang 2008] in the following
ways. Firstly, this analysis considers only those tasks that have overlapping execution
periods for analyzing the interference, whereas the work by [Yan and Zhang 2008]
assumes all tasks scheduled on every other core to be interfering. Further, this work
also analyses set associative caches that provide better estimates when compared with
direct mapped caches.

Experiments and Results: Experiments are performed on a quad-core processor with
2GB RAM, and the benchmark used for analysis is DEBIE [deb 2000]. The work com-
pares the WCET estimates by progressively increasing the number of cores and L2
cache size. In Figure 6, we present the comparison of the results between the two
methods ( [Yan and Zhang 2008] and [Liang et al. 2012]) for a particular cache con-
figuration. We can observe that there is a significant reduction in the WCET estimate
and inter-core evictions in the method proposed by Liang et.al. [Liang et al. 2012].

4.1.2. Using Bypass to tighten WCET estimate. Another study proposes a method to mit-
igate the effect of shared cache interferences [Puaut 2008], [Hardy et al. 2009]. The
major contribution of this work is that it offers a method to reduce the pessimism in
the estimated WCET while analyzing the inter-core interference. This is achieved by
identifying code blocks that are used only once during the execution and avoid caching
them. This work assumes that every core has at least one level private cache and all
cores share another level of cache. Also, the caches use LRU replacement policy.

Implementation: This study uses Abstract Interpretation (AI) to perform cache anal-
ysis as shown in Figure 7. The hits and misses at every cache level are computed and
the cache accesses are classified as hits, misses, first-time miss and unclassified.

Extending this analysis for multi-cores and the shared cache, interference is esti-
mated using a heuristic. From cache analysis, information about the memory accesses
that can occur at the shared cache level from every task is obtained. Using this in-
formation, all memory accesses that may potentially interfere in the shared cache are
identified. An interference bound for all the tasks and every cache set is obtained.

This work also identifies blocks of code that are used only once during task execution.
This is statically determined based on the access classification performed before. These
blocks of code are cache inhibited. The cache analysis performed after removing these
blocks provides tighter WCET estimates.

Experiments and Results: Experiments are conducted using MIPS binary code. The
experiments are done using Malardalen WCET benchmarks [Gustafsson et al. 2010].
We consider two applications, ‘crc’ with lowest program size (1432 bytes) and ‘statem-
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Fig. 7. Bypass technique to reduce pessimism in cache analysis [Puaut 2008], [Hardy et al. 2009]

ate’ with the largest program size (8900 bytes), and compare across the experiments
that estimates worst-case L2 hit ratio. For ‘crc’, the hit ratio in the worst-case without
bypass is 61.85%, and with bypass it is 98.97%. Similarly, for ‘statemate’ the hit ra-
tio in the worst-case without bypass is 0.19%, and with bypass it is 1.21%. From this,
we can conclude that the inter-core interferences are reduced when bypass scheme is
used.

Discussions: The static analysis work on caches try to solve the problem of shared
caches by analyzing them off-line and without making any changes to the hardware
architecture. The classical cache analysis is the concrete analysis that provides infor-
mation about every cache state [Ferdinand and Wilhelm 1999]. The drawback of using
this approach was that the number of cache states increases exponentially. To miti-
gate this problem, the concept of Abstract Interpretation (AI) was introduced, which
reduces the number of cache states. With the advent of multi-cores, shared caches
were introduced in the architecture which caused inter-core data eviction. This was
analyzed using inter-core cache analysis discussed in this section. Both studies dis-
cussed in this section, Liang et.al. [Liang et al. 2012] and Hardy et.al. [Hardy et al.
2009], use AI to perform their single-core analysis. The difference between them is
how inter-core analysis is performed. The study by Liang et.al. [Liang et al. 2012] uses
task graph and an iterative mechanism to estimate the cache misses that occur in the
shared cache due to inter-core cache conflicts. On the other hand, the study by Hardy
et.al. [Hardy et al. 2009] uses a conflict bound to identify the blocks of program that
interfere with each other. Also, the study by Hardy et.al. [Hardy et al. 2009] improves
upon the existing analysis technique by identifying blocks of program that are used
only once (single used blocks), and removing them from cache analysis thereby reduc-
ing the pessimism in WCET estimation. It is also essential to note that the evaluation
by Hardy et.al. [Hardy et al. 2009] ignores task lifetimes and scheduling, whereas
Liang et.al. [Liang et al. 2012] uses this information in the analysis.

One of the major drawbacks of both these analyses is that they rely on assumptions
such as LRU cache replacement policy and non-preemptive processing. These unrealis-
tic assumptions pose a serious question on the applicability of these analyses for COTS
processors. On the contrary, robust analysis techniques without these assumptions is
an open problem in this domain of research.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A Survey of Techniques for Achieving Time-Predictability in Multi-cores A:23

Fig. 8. Cache Hit Miss Classifications [Hardy et al. 2009]

4.2. Interconnect Analysis
This subsection presents research that addresses the unpredictability in access to the
shared interconnect (box 8 in Figure 3) by analysis methods.

4.2.1. Interconnect Analysis using TDMA Offsets. A technique to analyze the delay in ac-
cess to the shared interconnect was proposed by [Kelter et al. 2011]. The assumed sys-
tem model is a multi-core architecture with every core having one level private cache
and an in-order pipeline. The cores connect to a shared interconnect which performs
TDMA arbitration. This interconnect is connected to another level of cache which is
also shared and finally to the DDR memory via a controller. The cache in this analysis
is exclusive and uses LRU replacement policy.

Implementation: To analyze the shared interconnect, this study assumes a TDMA
scheme where a fixed length time slot is assigned to every core. Thus, each core can
obtain access to the interconnect only during its slot. Otherwise, it needs to wait to
obtain a slot. Depending on the time when a task requests access to the interconnect,
the amount of time that this request would have to wait before getting access to the
interconnect is determined. This approach helps to bound the interconnect delay and is
used to estimate the WCET of the task. The analysis is embedded into the CHRONOS
WCET analysis framework [Li et al. 2007].

Experiments and Results: Experiments are performed on Intel Xenon processor with
Debian Linux OS. CPLEX ILP solver has been used to obtain WCET estimates [cpl
1993]. Tasks from several benchmarks such as DEBIE, MRTC and Papabench were
used to test the technique. From the experiments, it is concluded that using offset
analysis with the assumption of multi-core architectures without timing anomalies
would provide the tightest WCET estimate.

4.2.2. Interference Sensitive WCET estimation. Another study proposes an approach to es-
timate WCET by taking into account different access times due to the concurrent usage
of shared resources in multi-cores [Nowotsch et al. 2014]. This work is an offline anal-
ysis which is supported by monitoring technology that enforces guarantees on shared
resource usage at run-time. The timing analysis is performed in two steps where the
first is to quantify delay within a core and the second is to quantify delay due to sharing
of resources. Every shared resource is abstracted using its bandwidth, and every re-
questing task is designated a certain portion of it. Using this allocated resource share,
the technique ensures that none of its resources are over-utilized. Run-time monitor-
ing is used continuously to update the resource usage of a task. Monitoring identifies
if a particular resource is over-utilized by a task and provides a trigger for suspending
that task.

Implementation: WCET estimation has been dealt with in two phases: 1) Single-core
resource and timing analysis for every task, and 2) Bounds for multi-cores by using
the single-core results for co-running tasks. For single-core timing analysis, cache and
pipeline analysis are performed as described in Section 2.2, and is further supported by
a resource analysis (for every shared resource and every task). Thus, an upper bound
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Fig. 9. is-WCET vs Naive approach (Refer Table III in [Nowotsch et al. 2014])

for using the shared resource is obtained. Using these analyses, a multi-core WCET
estimate is obtained for each task along with the runtime resource usage capacity.

Experiments and Results: This work is evaluated on the octa-core Freescale p4080
processor with SYSGO’s commercial RTOS (PikeOS) [Kaiser and Wagner 2007] and
AbsInt timing analysis framework [Ferdinand and Heckmann 2004]. The WCET com-
puted is compared to the naive approach where every memory access is accounted with
its maximum delay as shown in Figure 9. It can be observed that as the code size in-
creases, the proposed technique estimates tighter bounds when compared to the naive
approach.

4.2.3. Model Checking for Bus Analysis. Another study proposes a model checking based
approach for timing analysis of multi-cores [Lv et al. 2010]. This work tries to solve the
unpredictability in multi-cores by modeling the cache and shared bus using Timed Au-
tomata (TA). Tasks are bounded using local cache analysis and assuming a predictable
arbitration on the shared interconnect.

Implementation: The timing analysis of the local cache is performed using Abstract
Interpretation (AI) [Ferdinand and Wilhelm 1999]. The shared interconnect accesses
usually depends on the nature of cache accesses. We can infer that all accesses that are
cache hits will not access the shared interconnect. On the other hand, those accesses
that are cache misses will access the shared interconnect. Instructions that are not
classified can either be a hit or a miss in the cache. Hence both these cases are consid-
ered while constructing the automata. The arbitration in the interconnect is assumed
to be either First-Come First-Served or TDMA and is also modeled based on the cache
analysis. After building the model based on the states discussed, the task for which
the timing bound is required along with the model is given as input to UPPAAL model
checker, which estimates the WCET of the task.

Results: The Malardalen benchmark suite is used to perform experiments with the
constructed models [Gustafsson et al. 2010]. For each task the WCET from the model
checker is compared with the worst-case delay (by analysis) and the improvement in
the WCET estimate is determined. For instance, ‘bs’ task from Malardalen benchmark
has an improvement of 77% over the worst-case interconnect delay for TDMA arbitra-
tion scheme.

4.2.4. Impact of Interconnect Contention on the WCET. This method [Dasari and Nelis
2012] computes a bound on the maximum memory access requests that a core can
generate and also proposes a methodology to find the delay that a task incurs when
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multiple tasks execute on a multi-core. This improves the work proposed in [Dasari
et al. 2011]

Implementation: The system model is a multi-core architecture with all caches either
partitioned or disabled. The prefetch algorithm and request buffering in the memory
controller is also disabled. The basic idea of this work is to reduce the pessimism in
computing the bound on the number of accesses to the interconnect in any time in-
terval. The work [Dasari et al. 2011] computes the upper bound in two steps. In the
first step, the number of memory accesses of a task within a time interval is computed.
The next step estimates the upper bound by the addition of all the accesses from every
other task within that interval. To avoid this overestimation, this method [Dasari and
Nelis 2012] splits the time interval into three sectors which are as follows: a) tasks
that have already started to execute and enter into this time interval, b) tasks that
begin and end within this interval and c) tasks that commence in this interval and
end outside it. Once these sectors are classified, the total number of accesses to the
interconnect reduces (when compared to the case where every request from all tasks
within the time interval is considered) which mitigates the pessimism.

Results: For evaluation of this work, a set of 25 tasks were generated and randomly
assigned to the four cores and was compared to the work in [Dasari et al. 2011]. It was
then verified that this work provides tighter WCET bound when compared to [Dasari
et al. 2011].

Discussions: Static analysis techniques for the system interconnect try to address
the problem of unpredictability arising due to inter-core interference on the shared in-
terconnect (described under Section 2.3). The studies on shared interconnect presented
in this section view the problem differently, wherein one of them assumes TDMA ar-
bitration for access to the shared interconnect, while another computes the total in-
terference on the interconnect and monitors them at run-time, another work develops
a timed automata for the functioning of the shared interconnect and the last contri-
bution bounds the number of memory accesses to the interconnect. All these works
primarily assume the arbitration to be TDMA or round-robin. This assumption may
not be valid for a COTS hardware since most of the processor manufacturers do not
disclose their arbitration schemes. Also, none of the analysis techniques presented in
this section include the effect of shared caches on the interconnect, or consider the
effect of running a coherency protocol.

4.3. DDR controller Analysis
This subsection presents research that addresses the unpredictability in access to the
DDR memory by analysis methods (box 7 in Figure 3).

4.3.1. Memory Interference Delay Analysis. This work [Kim et al. 2014b] models the DDR
memory resource and obtains a bound for the delay experienced by a task due to other
tasks that run in parallel on a multi-core.

This work has three main contributions. First is considering a model which takes
into account the timing details of DDR memory in accordance with JEDEC standards.
Second is to bound the memory access interference of a task by considering its ac-
cesses and the interfering accesses during its execution. Finally, it also evaluates the
consequence of using private against shared DDR banks.

Implementation: For this analysis, the memory controller is assumed to have a buffer
for each bank and a two-level scheduler (within a bank and between banks). Also, the
arbitration is assumed to be First-Ready First-Come First-Serve and cache interfer-
ences are assumed to be non-existent. The two levels of interference to be analyzed
are intra-bank and inter-bank. The system model for analysis assumes a task with
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four parameters (WCET, Period, Relative deadline and Maximum DDR requests gen-
erated).

The first approach bounds the maximum delay experienced by every request by fo-
cusing on the number of memory accesses generated by the task itself. According to
this method, the delay within a bank is bounded based on the timing constraints in
the controller. If consecutive memory requests are to the same row, then the cost of
opening a row is avoided which reduces the latency for multiple access to the same
row. This delay is zero if the banks are privatized. The delay between banks is consid-
ered by computing the channel timing constraints.

The second approach bounds the maximum delay due to all the other memory ac-
cesses from the interfering task over a period. It assumes that all these accesses are
processed before the access being analyzed. A response time test is performed for these
approaches.

Results: PARSEC benchmarks are used with Linux/RK running on a quad-core
processor for experiments. When the DDR banks are shared, the WCET estimation
without re-ordering of commands is overly optimistic, but the one with command re-
ordering is close to the observed values. When the banks are partitioned, the observed
and estimated values are very similar.

4.3.2. Parallelism-Aware Memory Interference Delay Analysis. This work [Yun et al. 2015]
improves the basic DDR analysis performed in [Pellizzoni et al. 2010b] by considering
a realistic model of interference of a multi-core.

Implementation: This work also follows the two approaches as mentioned in [Kim
et al. 2014b]. One is to bound the delay based on the memory demand of the task
under analysis and the second is to bound the delay due to the interference from the
other tasks. The key factors which form the basis of this implementation are that the
number of contending memory accesses from other cores are bounded and overlap of
DDR commands at command scheduling level are considered. These factors help to
reduce the pessimism in the memory interference analysis to provide a tighter bound.

Results: The evaluation platform consisted of a quad-core processor with a DDR
model and partitioned at the bank level. The benchmarks are from SPEC2006. From
the results, it can be seen that this technique provides WCET estimates that are closer
to measured values.

Discussions. This section focuses on the unpredictability in the access to the shared
DDR memory through its controller. The studies presented ( [Kim et al. 2014b]
and [Yun et al. 2015]) consider the effect of interference when a task executes with
respect to the memory controller. However, these analyses are still pessimistic in the
worst-case (as presented in [Yun et al. 2015]). Hence they require more architectural
knowledge/assumptions that can reduce the pessimism.

4.4. Cache Locking and Partitioning
Locking and partitioning of caches are two hardware techniques that facilitate pre-
dictable access to the shared cache on a COTS multi-core platform. When a core locks
a line in the cache, the data in the locked line cannot be evicted by tasks running on the
other cores. Orthogonally, caches can also be partitioned in a way that the different par-
titions are mapped to the distinct cores. In the following subsections, we present three
studies that focus on achieving predictability on the shared cache through locking or
partitioning (box 6 in Figure 3).

4.4.1. Semi-Partitioned Scheduling with Cache Locking. The work by Shekhar
et.al. [Shekhar et al. 2012] proposes to use cache locking and locked cache mi-
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Fig. 10. Comparing semi-partitioned and partitioned approach [Shekhar et al. 2012]

gration to schedule a set of independent tasks using semi-partitioned scheduling
strategy (strategy discussed in [Bletsas et al. 2008]).

Implementation: Given a set of tasks and cores, this work statically partitions as
many tasks as possible on to the different cores. Those tasks that are not statically
assigned to a core can migrate from one core to another among a predetermined set
of cores. Within each core the task that has the earliest deadline is scheduled first for
execution. The tasks within a single core can statically select and lock memory lines
within the private cache of that core. While migrating, memory lines of that particular
task are first unlocked and then moved to the target core and then locked again within
the target core’s private cache.

Results: Figure 10 shows a comparison of schedulable utilization and density (“ra-
tio of execution time of a task to its relative deadline” [Shekhar et al. 2012]) of the
proposed approach against partitioned strategies. The shaded portion in the graph
indicates an increase in the density and utilization for the proposed algorithm.

4.4.2. Exploring Cache Locking and Partitioning. Another work explores locking and parti-
tioning techniques for predictability in shared caches [Suhendra and Mitra 2008]. It
uses different combinations of cache partitioning and locking to analyze the impact
on the worst-case performance of an application. The various methods evaluated are
static and dynamic locking techniques with and without partitions in the shared cache.

Implementation: The different locking and partitioning scenarios explored are as
follows. The first scenario is where the contents of the cache are locked and kept un-
changed during a task execution. A cache block is associated with a task regardless of
the core on which it has been scheduled. This is limited in flexibility if the total code
size exceeds the size of the cache. The second scenario is similar to the first except that
the cache is partitioned such that each core can lock its task contents in some portion of
the cache. The third scenario is where the entire cache is partitioned based on all tasks
in the system. After partitioning, every task dynamically performs locking during run-
time. The final one is where the cache is partitioned based on the total number of cores
in the system and the tasks dynamically lock regions of the cache during run-time.

Experiments and Results: These scenarios are implemented on a dual-core processor
with two cache levels and two-way associativity. The conclusions of these experiments
are as follows. For core based partition, dynamic locking utilizes the cache better than
static when the cache is limited and there are many cacheable portions of the task.
On the other hand, when the size of cache increases and there are very few cacheable
portions, then static locking performs better. The second category is the task based
partition. The trend for this partition is also similar to the core based strategies.
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Discussions. Cache locking and partitioning try to address the challenge of pre-
dictably accessing the shared cache (described under Section 2.3). These are hardware
features that can be used at the software level to perform cache accesses. Two central
questions that arise while using these techniques are “What data to lock and for how
long?” and “How much of the cache is to be partitioned?”. The studies discussed in this
section try to address these issues by presenting various techniques for locking and
partitioning. All these techniques, however, lock/partition the entire shared cache. But
multi-core as an architecture is suited to share data across the cores. None of these
techniques address this issue of efficient sharing of data between the cores when the
cache is partitioned/locked.

5. UNMODIFIED COTS HARDWARE AND MODIFIED MIDDLEWARE
This section presents research that makes no changes to a multi-core hardware but
modifies the middleware to obtain predictable execution of tasks in multi-cores (box 9
in Figure 3).

5.1. PREM (PRedictable Execution Model for multi-cores)
The work by Alhammad et.al. [Alhammad and Pellizzoni 2014] proposes a method to
execute tasks such that the accesses to memory can be completely independent of the
policies employed by the hardware. This is achieved using an algorithm that maps and
schedules tasks on the multi-core using fork-join model. In this work, every sequential
task is split into multiple segments and every segment is processed in two phases. In
the first phase, data that is required for task execution is brought to that particular
core’s private cache. This step ensures that the execution does not suffer any cache
misses and hence would also not access DDR memory. In the second phase, the task is
executed.

5.2. OS-level Shared Cache Management Technique
An OS-level technique to allocate shared cache partitions to different tasks was pro-
posed by Kim et.al. [Kim et al. 2013]. To predictably share caches, this work uses page
coloring mechanism. Rows in the DDR memory are termed as pages. Page coloring al-
gorithm allocates different colors to each page with every color physically mapped to
different locations in the DDR memory.

Implementation: The approach presents a strategy that combines partitioning and
sharing of caches to use shared cache efficiently. The unique feature of this approach
is that while partitioning the shared cache, every partition is allocated to a core rather
than to a task. Also, the tasks within a core can share the assigned partition. The dis-
advantage of sharing a partition by multiple tasks is that it creates preemption and
warm-up delays. The work provides bounds for these delays by using a response time
test that accounts for these delays. Using these two strategies, cache partitions are al-
located to cores and tasks are allocated to these partitions based on best-fit decreasing
bin packing heuristic.

Experiments and Results: The work has been implemented on Linux/RK and evalu-
ated on Intel i7-2600, a quad-core processor. The evaluation system has 8MB of shared
L3 cache that has been divided into four partitions each with 2MB. To test the allo-
cation technique, periodic tasks from the PARSEC benchmark suite was used [Bienia
et al. 2008]. For this experiment, best-fit and worst-fit bin packing algorithms along
with normal cache partitioning was compared against the proposed strategy. It was
observed that this technique not only reduced memory usage but also provided better
processor utilization.
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5.3. Page Coloring technique to manage Shared Caches
Another study proposes the use of page coloring mechanism and real-time resource
locking protocols to handle inter-task interferences on the shared cache [Ward et al.
2013]. The challenge with coloring mechanism is to find an optimal strategy to assign
colors to tasks. The idea of this work is that it utilizes page colors as resources that
can be shared, and the access to these resources could occur through arbitration using
any real-time locking protocol.

Implementation: For cache locking, every task that executes on the core must lock
the required lines in the cache before the start of its execution, and hold the lock
till its completion. This work combines cache locking protocols with cache coloring
mechanism. The locking protocol manages the access to all the colors. The drawback
of using this technique is that the task execution cannot be preempted. The work also
provides solutions to mitigate this problem. It suggests to either split the period of
execution (where all tasks will have the period of the shortest task) or split a larger
task into smaller subtasks.

To reduce the effect of blocking due to the non-preemptive execution of tasks, this
work views cache colors as a resource that can be preemptively scheduled. Thus when a
task is ready for execution, it is scheduled along with all the required cache colors and
hence it has exclusive access to those cache partitions. The advantage of this method is
that when there is a higher priority task which needs to be executed, this method can
preempt the current task with the higher priority one. However, the delay due to the
reloading of tasks needs to be taken into account which is described in Brandenburg
et.al. [Brandenburg 2011].

Results: The techniques described are implemented as part of LITMUSRT [Calan-
drino et al. 2006]. The proposed method is compared against caches that do not have
any particular management techniques. From the results, it can be observed that lock-
ing caches and splitting the period of task execution always provides better processor
utilization with an improvement of at least 50% over the unmanaged cache.

5.4. PALLOC: Bank Aware Memory Allocator
Another work uses a virtual memory model that allocates memory pages of every task
to only specific banks [Yun et al. 2014]. Operating systems lack details on the mapping
of memory accesses to DDR banks. Most memory accesses are spread across several
banks of memory. Consider a simple scenario when there are 2 cores and 2 banks.
The best case memory access would occur when each core accesses only one bank or
when only one of the cores requires memory accesses to both the banks. In these cases,
there are no inter-core conflicts in the access to memory. But most memory accesses
are such that both cores could potentially access data in both the banks. This causes
unpredictability in the memory access times. This work offers a predictable DDR bank
allocation scheme to address this issue.

Implementation: PALLOC has been implemented as an OS level memory allocator
for tasks. It uses the memory translation unit to allocate memory pages for tasks in
the DDR. The OS has a data structure that maintains a list of pages that are free. An
allocator function is executed whenever there is a page fault. This function keeps a
separate list for every bank in the DDR and finds a page from one of these banks. If a
matching page is found, it returns it. Else, the free list is checked iteratively to obtain
a match.

Results: PALLOC has been evaluated on two separate platforms. One is the Intel
Xeon 3530 which has 4 X86-64 cores with Linux OS and 4GB DDR with 16 banks,
and another is the Freescale P4080, which has 8 PowerPC cores with Linux OS and
2 x 2GB DDR with 32 banks. Two types of experiments are performed. In the first

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:30 Sriram Vasudevan et al.

experiment, all the cores access the same bank and is compared with the case where
core 0 accesses only bank 0 and the other cores access banks 1 to 3. It can be observed
from the results that the average latency to access the same bank (bank 0) increases
as the number of cores increase. This is evident from the fact that the memory accesses
are serialized. On the other hand, when there are accesses to different banks, it can
be seen that the access time for core 0 remains constant at approximately 65ms. This
shows the effectiveness of mapping cores to banks.

A second experiment is performed to determine the impact in performance when
DDR banks are partitioned among the cores. The testing unit is a data acquisition
system wherein one of the cores would have real-time tasks while the other cores would
have background tasks. A similar performance as the first experiment was observed,
which highlights the importance of DDR bank partitioning.

5.5. Memguard: Memory Bandwidth Reservation System
Another study implements a memory bandwidth reservation system that allocates,
recovers and maximizes the utilization of the memory bandwidth [Yun et al. 2013].
This work provides an OS-level approach not only maximizes the performance of each
core but also provides predictable memory access.

Implementation: Memguard works by regulating every core’s request rate to the
memory (the rate at which every core can generate request to the DDR memory). The
main principle of regulating this bandwidth is that the total memory request rate is
always maintained below the DDR’s total capacity. The architecture of Memguard has
two functions. First is to assign memory bandwidth to cores by reading hardware per-
formance counters and the second is to recover the unused bandwidth and distribute
to all cores.

Results: This work has been evaluated on Intel Core 2 Quad 8400 processor with
4MB cache and Linux OS. The experiments were performed with SPEC2006 bench-
marks [Henning 2006]. In the first experiment, one of the two cores has a real-time
task while the other core executes background task. The benchmark is executed with
and without Memguard. It can be observed that the real-time task achieves maximum
utilization when there are no background tasks. On the other hand, its performance
decreases when there are background tasks. In the second case, when executed with
Memguard all tasks achieve a guaranteed performance level, irrespective of whether
it is executed with a background task or not.

5.6. Real-time Cache Management Framework
This OS-level study develops a framework to obtain memory patterns of a task, and
also a cache maintenance method for the most frequently accessed memory loca-
tions [Mancuso et al. 2013]. Shared caches are always a source of unpredictability due
to the interference in the access to it by multiple cores. This study uses cache coloring
and locking to provide predictable access to the memory.

Implementation: The first step in this framework is to profile all the real-time tasks.
This is done by executing every task within a controlled environment and finding all
memory requests that are generated. After obtaining this profile data, the most fre-
quently used memory accesses are identified. The profile data is used for real-time
shared cache management which works in two stages. Initially using cache coloring
mechanism, the frequently used memory accesses of all tasks are provided a particu-
lar color exclusively. In the second stage, those frequent accesses are prefetched and
locked in the cache.

Results: Experiments are performed on Pandaboard development board which has
an ARM Cortex A9 processor [Instruments 2012]. Tasks used for testing are from the
EEMBC benchmark [Poovey 2007]. The memory profiles of the tasks in this benchmark
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are obtained and the most frequently accessed pages are sorted. Although there are a
number of pages that are accessed by the tasks, only those that are most frequently
used are locked in the cache. Locking of frequently accessed pages reduces the WCET
by as much as 2.5%.

A recent study combines multiple OS-level techniques to manage interference in
shared resources [Sha et al. 2014]. This work combines 5.4, 5.5 and 5.6 techniques
described before to address the challenges in shared hardware resources on COTS
multi-cores.

Discussions. This category of work (Unmodified COTS hardware and modified mid-
dleware) tries to address the challenges of shared hardware resources (specifically
caches and memory controllers) described under Section 2.3 by making modifications
to the OS. The first contribution is a predictable execution model that tries to schedule
every resource access and concurrent threads in two phases, prefetching and comput-
ing. This method of execution would suffer in throughput when there are a large num-
ber of cores that are executing real-time tasks. For predictable cache accesses, there are
two contributions, both of which utilize the concept of page coloring mechanism. The
study by Ward et.al. [Ward et al. 2013] proposes a more dynamic method of schedul-
ing the tasks to access the cache, whereas the work by Mancuso et.al. [Mancuso et al.
2013] statically analyzes the tasks to obtain all possible memory requests. Finally, the
work by Yun et.al. [Yun et al. 2014] proposes PALLOC that provides predictable DDR
accesses. Again the drawback of this method is the use of list data structure that can
cause a significant overhead in real-time.

6. DISCUSSIONS AND CONCLUSIONS
The relevance of time criticality in real-time systems has motivated the need for archi-
tectures and analysis that are amenable to WCET estimation. However, the advance-
ments in hardware architectures have posed questions about the feasibility of these
hardware to be used in real-time systems. Initially, a single-core processor was used
as the primary hardware for implementing a real-time system. A single-core processor
inherently has several design features that are difficult to analyze. This causes un-
predictability in measuring the execution times of the applications. These include pre-
emptions, hardware prefetching, timing anomalies, data-dependent control flows and
context dependence of execution times. These challenges themselves have not been
fully addressed, but by then the chip industry had overwhelmingly moved towards
multi-core processors owing to the increasing demand in computational requirements.
The introduction of these multi-cores has made single-cores obsolete, as most chip
manufacturers have moved towards multi-cores owing to their exceptional SWaP char-
acteristics. COTS multi-core has multiple single-cores that are fabricated on a single
die and hence share hardware resources within the die. The increased complexity in
the architecture has introduced more challenges in estimating the WCET of a task on
multi-cores. Sharing of hardware resources such as caches, interconnects, cache and
memory controllers, is the primary reason that has caused unpredictability in the esti-
mation of WCET. Hence, most of the research in WCET estimation on multi-cores have
focused on techniques to deal with shared hardware resources. Apart from these, sec-
ondary challenges that also added to the unpredictability are power saving strategies,
system interrupts, and TLB misses. These challenges mostly remain unaddressed.

As discussed in Sections 3, 4 and 5, the research towards predictable WCET esti-
mation has been broadly classified into three categories. The work on improving the
hardware focused on either obtaining predictable multi-core components (memory con-
trollers, caches and interconnect designs) or developing an entire hardware architec-
ture suited for real-time systems (for example MERASA, parMERASA, etc.). Static
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analysis techniques derive WCET estimates by defining processor models and assum-
ing the behavior of different components in its architecture. However, many of these
analyses have been derived from assumptions that do not necessarily hold for COTS
multi-core platforms (such as TDMA arbitration scheme in the interconnect). Finally,
another section of research focused on modifying the operating system or utilizing
hardware features (such as cache locking or partitioning) to obtain predictability in
the execution of applications. Even these have their challenges of efficiently sharing
data between the cores.

An interesting aspect to be discussed here is the interdependence among the solu-
tions presented under different sections. The advantage of designing hardware com-
ponents (Section 3) is to have a fine grained control over the execution of tasks. How-
ever, with any hardware it is also important to have a strong analysis to estimate
WCET (Section 4). Also, in real-time applications, it is most likely that a middleware
(Section 5) is also used to abstract the hardware architecture for software designers.
Hence, it is important to resolve the challenges in all three categories to avoid any
unpredictability in the system and to avoid pessimism in WCET estimation.

Since most research has focused on solving the problem of shared hardware re-
sources (shared caches, controllers and interconnect) existing in multi-cores, none of
them have focused on other challenges (power saving strategies, system interrupts,
TLB misses, hardware prefetching) which are equally important to obtain a completely
predictable system. They either require modifications at the hardware level, or suffi-
cient pessimism must be added to the analysis to compensate for their effects. COTS
hardware is known to be ‘unpredictable’ requires modifications at the architectural
level. The solutions for shared hardware that were proposed have had considerable
drawbacks in each of them. The solutions towards predictable memory controllers have
issues of scalability, area, power consumption and integration with commercial proces-
sor architectures. System interconnects are limited in bandwidth and require efficient
solutions when multiple cores try to access memory simultaneously. Shared caches
have offered not only high performance and quick access to the main memory but also
allowed sharing of data across the cores. There are no solutions to safely share data
across the cores which is one of the key features to be exploited in this architecture.
Finally, the unpredictability in the cache controller which is responsible for maintain-
ing coherency and replacement of data has not been addressed in any of the research
work. These issues need to be addressed to obtain a truly predictable COTS multi-core
to be used in RTA.
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