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Abstract

Compositional schedulability analysis of hierarchical real-
time systems is a well-studied problem. Various techniques
have been developed to abstract resource requirements of com-
ponents in such systems, and schedulability has been ad-
dressed using these abstract representations (also called com-
ponent interfaces). However, all these previous approaches
incur resource overheads when they abstract components into
interfaces. In this paper, we define various notions of resource
optimality for component interfaces, and present techniques to
generate such optimal interfaces. Specifically, we define two
notions of optimality; one focusing on the average resource
requirements of component, and the other focusing on the ac-
tual resource requirements of component. We develop efficient
techniques to generate interfaces that are optimal under av-
erage resource requirements. However, under actual resource
requirements, we show using an example that optimal inter-
faces are hard to generate.

1. Introduction

Hierarchical systems are used to model resource require-
ments of software developed under the component-based de-
sign paradigm. They represent a scheduling hierarchy under
which resources are allocated from a parent component to its
children, and each component is free to use its own scheduler.
Schedulability analysis of such systems is a fundamental prob-
lem that must be addressed. Further, it is highly desirable that
the analysis be compositional, i.e., one should be able to de-
duce the system level resource requirements by composing in-
terfaces that abstractly represent component level resource re-
quirements.

Many studies have been proposed on compositional schedu-
lability analysis of hierarchical systems [9, 19, 15, 20, 21, 1, 4,
17,5, 23,11, 22, 8,7, 3, 10]. They have used resource models
(e.g., periodic [19, 15, 20, 8], bounded-delay [9, 21], EDP [7])
and demand bound functions [23, 22] to abstract component
resource requirements. They have also proposed extensions

supporting interactions between components using task ab-
stractions [1, 4, 17] and resource-sharing protocols [5, 3, 10].
However, there is no work that characterizes the notion of re-
source optimality for such systems. Given a hierarchical sys-
tem, resource optimality refers to a quantitative measure of the
minimum total amount of resource required by this system.
Without knowledge of this measure, it is not possible to quanti-
tatively assess the various analysis techniques. Although previ-
ous studies have developed local component-level resource uti-
lization bounds for interfaces [20], there is no global system-
level measure for resource usage.

In this paper we address the issue of defining various no-
tions of resource optimality for component interfaces. Specifi-
cally, we identify two notions of this optimality; load-based or
load optimality, and demand-based or demand optimality. In-
tuitively, a component interface is load optimal, whenever the
amount of resource required by the interface is the same as the
average resource requirements of component workload. On the
other hand, a component interface is demand optimal, when-
ever the amount of resource required by the interface is the
same as the actual resource demand of component workload.
In addition to defining notions of optimality, we also develop
techniques that generate load optimal interfaces. Furthermore,
since hierarchical systems can be either open (components are
partially specified) or closed (complete knowledge of all the
components in the system), we separately define and generate
optimal interfaces for each of these cases.

Assuming component workloads are comprised of con-
strained deadline periodic tasks, we show that load optimal in-
terfaces, for both open and closed hierarchical systems, can be
generated in pseudo-polynomial time. Each load optimal in-
terface is represented by a single constrained deadline periodic
task, and hence the size of such an interface is constant in com-
parison to the input specification. Using an example, we also
show that demand optimal interfaces are hard to generate for
both open and closed hierarchical systems; the interface has
exponentially larger number of tasks in comparison to number
of tasks in the underlying component.

Techniques presented in this paper provide a baseline for
resource utilization in hierarchical systems; they identify the
minimum resource requirements of workloads scheduled un-



der a given scheduling hierarchy. In addition, these techniques
also reveal an interesting trade-off between resource require-
ments of interfaces and their size in terms of number of tasks.
In the example we consider for demand optimality, number
of tasks in the interface is exponentially larger than number
of tasks in the underlying component workload. Although, in
general, this increase is unavoidable, demand imposed by a set
of tasks in the workload may sometimes be represented by a
smaller set of tasks, reducing the size of the interface. In Sec-
tion 4.2, we characterize some of the cases when such a reduc-
tion is possible without loss of precision in demand. It is in-
teresting to note that resource model based interfaces and load
optimal interfaces offer an extreme case of such reduction, es-
sentially over-approximating resource demand and collapsing
the entire workload into a single task. The optimality char-
acterization presented here, in turn, helps us to understand this
trade-off between over-approximation of demand and interface
size.

Related work. For real-time systems, there has been a
growing attention to hierarchical systems. Since a two-level
system was introduced by Deng and Liu [6], its schedulability
has been analyzed under fixed-priority [12] and EDF [14, 16]
scheduling. The bounded-delay resource model [18] has been
proposed to achieve a clean separation in a multi-level hier-
archical scheduling framework, and analysis techniques have
been introduced for this resource model [9, 21].

Periodic resource model based interfaces, and their compo-
sitional analysis is a well known technique that has been stud-
ied extensively [15, 19, 20]. These models have been devel-
oped under fixed-priority [1, 4, 15, 19] and EDF [20] schedul-
ing. Techniques have also been proposed to support interacting
tasks [17] and mutually exclusive resource sharing between
components [5, 3, 10]. Extensions to periodic models with
more efficient interfaces have also been proposed [7]. There
have also been studies on incremental analysis for hierarchical
systems [23, 11, 22, 8]. They abstract resource requirements
of components in the form of demand functions [23, 22], and
bounded-delay [11] or periodic [8] resource models.

2. System model

In this section we describe hierarchical systems, state our
assumptions, and define notions of resource optimality. In dis-
crete computing systems, it is always possible to identify a
time interval such that no successive events or actions can oc-
cur within this interval (e.g., system clock frequency can be
used to define this smallest time unit). We assume that all the
parameters below are defined as multiples of this time unit.

2.1. Definitions and assumptions

Each instance of resource demand is called a real-time job
and it can be specified using three parameters; release instant r
with respect to an origin of time, maximum required resource
capacity c, and relative deadline d with respect to the release
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Figure 1. Hierarchical real-time system

instant. This job requires c units of resource in the time interval
(r,r+d]. A set of these jobs is called a real-time job ser J.

A component in a hierarchical system is comprised of a
real-time workload and a scheduling policy for the workload.
We model workloads of components using job sets.

Definition 1 (Real-time component) A real-time component
C is specified as C = (W, S), where W is a finite set of real-
time components and job sets, and S is the scheduling policy.
If W is comprised of only job sets then C is called elementary
component. Otherwise C is called non-elementary component.

This component structure can be viewed as a directed graph
with components or job sets as nodes of the graph. Sup-
pose W is comprised of components C1,...,C, and job sets
J1,- -, Tm-. Then, there is an edge from node C to every node
C; and every node J ;. A hierarchical real-time system is spec-
ified as H = (C,S), where C denotes a real-time component
whose underlying graph is a tree, and S denotes the schedul-
ing algorithm under which C is scheduled. C is also called the
root component of system H. Figure 1 shows a hierarchical
system, where C1,Co, and C3 are elementary components, and
the whole system is scheduled under EDF on the hardware plat-
form.

Assumptions. In this paper we assume that each job set is
generated from a set of independent, constrained deadline peri-
odic tasks. A constrained deadline periodic task 7 = (T, C, D)
has release separation T, maximum resource capacity require-
ment C, and relative deadline D, where C < D < T. 7 gener-
ates the job set {(¢,C,D)| T divides ¢}. Given a periodic task
set T = {Tl = (Tl, Cl, Dl), ey T = (Tn, Cn, Dn)}, we
denote its utilization as Uy = Z?:l %, and without loss of
generality assume D; < ... < D,,. We consider independent
periodic tasks as a first step towards addressing the issue of
resource optimality in hierarchical systems.

For simplicity of presentation, we assume that if a compo-
nent in the hierarchical system has a job set in its workload,
then it has exactly one job set. We also assume each com-
ponent’s scheduler is either Earliest Deadline First (EDF) or
Deadline Monotonic (DM), and that the hierarchical system



is scheduled on a generalized uniprocessor platform having
bandwidth b(0 < b < 1). This platform is guaranteed to
provide b X t units of processor capacity in every ¢ time units.

2.2. Semantics of hierarchical systems

Consider an elementary component that uses EDF sched-
uler. Recall that the demand bound function of this compo-
nent (dbf) gives its maximum resource demand in a given time
interval [2, 13]. Equation (1) and Theorem 1 give the dbf
and schedulability conditions respectively, for a component
C = (T ,EDF) scheduled on an uniprocessor platform having
bandwidth b [2].

abfe(t) =3 Q%J Ci) ()
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Theorem 1 (Schedulability under EDF) Ler 7 =
{T1,...,7n} denote a set of constrained deadline peri-
odic tasks. Component C = (T ,EDF) is schedulable on an
uniprocessor platform having bandwidth b iff

Vi st 0<t<L,dbfe(t) <bxt, )
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LCM being the least common multiple of T+, ..., T,,.

The schedulability load of this component LOAD¢ is defined
as max;e(o,r] M. If b > LOADg, then the uniprocessor
platform can successfully schedule component C. Note that
since EDF is an optimal scheduler for periodic tasks, the fea-
sibility load of task set 7 (LOAD~7) is also equal to LOADe.
This means, if an uniprocessor has bandwidth smaller than
LOADeg, then it cannot successfully schedule 7 under any
scheduling algorithm.

Similarly, consider an elementary component that uses DM
scheduler. Recall that the request bound function of this com-
ponent (rbf) gives the maximum resource requested in a given
time interval [13]. Equation (3) and Theorem 2 give the rbf
and schedulability conditions respectively, for a component

C = (7,DM) scheduled on an uniprocessor platform having
bandwidth b [13].

rbfe.s(t) = ; GTLJ ck) 3)

Theorem 2 (Schedulability under DM) Ler 7 =
{T1,...,7n} denote a set of constrained deadline peri-
odic tasks. Component C = (T ,DM) is schedulable on an
uniprocessor platform having bandwidth b iff

Vi, 3t € [O,Di] S.L. I'bfcﬂ'(t) <bxt 4)

The schedulability load of this component is defined as
LOAD¢ = max;—1,... ., mine(o,p,] M
Given a job set, EDF is a dynamic-priority scheduler that

selects for execution the job with earliest relative deadline. On

the other hand, DM is a fixed-priority scheduler which priori-
tizes jobs based on the deadline parameter of tasks that gen-
erate those jobs. Then, for elementary components, schedul-
ing its workload (constrained deadline periodic task set) under
EDF or DM is straightforward as explained above. However,
if a component C’s workload comprises of other components,
this is not the case. To schedule this workload under EDF we
must present a set of jobs, and to schedule it under DM we
must present a task set like periodic, sporadic, etc. In other
words, each component C; in the workload of C must be trans-
formed into a set of tasks/jobs that C’s scheduler can schedule.
Furthermore, informally, these tasks/jobs should be such that
the amount of resource required by them under C’s scheduler,
must be at least as much as the amount of resource required by
component C;. We refer to these tasks/jobs as C;’s interface.

Definition 2 (Component interface) We define the interface
of a task set to be the task set itself. Consider a component
C=W,S)withW ={Cy,...,Cp}. LetC itself be scheduled
under S', and Ty denote the set of interfaces of workload W.
T is an interface for C iff Zc is schedulable under S’ implies
Ty is schedulable under S. In this definition, we assume that
Ty executes under S whenever ¢ is scheduled by S'.

Thus, given a component C = ({Ci,...,C,},S), the funda-
mental question in scheduling C is, “What is the interface that
each C; must present to S?”. In this paper, our goal is to answer
this question, and in the process generate component interfaces
that are optimal with respect to resource utilization. Schedu-
lability conditions in Theorems 1 and 2 are agnostic to pre-
emptions, and hence we ignore preemption overheads in this
paper.

Synchronization. An important aspect of hierarchical sys-
tems, both open and closed, is that of synchronization between
components. Given a component C = (W, S), release of jobs
in the underlying workload of some component C; € W, need
not be synchronized with the release of jobs in the underly-
ing workload of any other component in W (Horizontal Syn-
chronization). Note that horizontal synchronization can be en-
forced in closed systems, but this is not the case in open sys-
tems. This means that our interface generation technique can-
not make any assumptions regarding synchronization between
interfaces of components in V. Now, suppose we synchro-
nize the release time of first job in a component in WV with the
release time of first job in its interface (Vertical Synchroniza-
tion). Then, observe that this forced vertical synchronization
does not enforce any horizontal synchronization constraints in
the system. In other words, we can vertically synchronize ev-
ery component in WV with its interface, without assuming any
(horizontal) synchronization between components in WV or be-
tween interfaces of those components. Therefore, we assume
vertical synchronization in the interface generation technique
presented in this paper. Note that this assumption only syn-
chronizes the release times of first jobs in component and inter-
face, and does not enforce any synchronization between other
jobs.



2.3. Optimality in hierarchical systems

The feasibility load LOADz, of a component interface Z,
is the smallest bandwidth required from an uniprocessor plat-
form to successfully schedule tasks in Z; under some sched-
uler. Similarly, given a set of interfaces 7 = {Z¢,,...,Zc, }
and a scheduler S, the schedulability load LOADz s is the
smallest bandwidth required from an uniprocessor platform to
successfully schedule Z under S. For instance, if Z comprises
of constrained deadline periodic tasks and S is EDF or DM, then
we have presented these loads in the previous section. Also, a
non-elementary component C = ({Cy,...,Cy},S) is said to
be feasible on an uniprocessor platform having bandwidth b,
if there exists interface set Z = {Z¢,,...,Z¢, } such that 7 is
schedulable under S on this resource.

Load-based optimality. The first notion of resource opti-
mality we define is called load optimality, which characterizes
average resource requirements of components.

Definition 3 (Local load optimality) Given a constrained
deadline periodic task set, its interface (task set itself) is de-
fined to be locally load optimal. Consider component C; =
({Ci,s-..,Ci, },Si). If I; denotes the set of interfaces of
workload {C;,,...,C; }, then Z¢, is locally load optimal iff
LOADz., = LOADz, s,.

If interface Z¢, is locally load optimal, then the interface gen-
eration process does not introduce any overheads with respect
to the average resource requirements of component C;. In
other words, if C; is feasible on an uniprocessor platform hav-
ing bandwidth b, then Z¢, is also feasible on that resource.
There could be many possible locally load optimal interfaces
for C;, and not all of them may result in a load optimal interface
for C;’s parent. Therefore, for closed systems, since we have
knowledge of other components scheduled with C;, it is useful
to identify those locally load optimal interfaces of C; that also
result in load optimality for its parent.

Definition 4 (Global load optimality) Given a constrained
deadline periodic task set, its interface (task set itself) is de-
fined to be globally load optimal. Consider component C =
({Cy,...,CL},S). Let T = {Z¢,,...,Z¢c,} denote the set
of locally load optimal interfaces of the workload of C, and Z¢
denote a locally load optimal interface generated from L. Also,
let T' denote any other set of locally load optimal interfaces of
the workload of C, and I denote the locally load optimal in-
terface generated from I'. Then, each interface Ic, € T is
globally load optimal iff LOADz., < LOADz, for every T¢.

In Section 3 we present a technique that generates globally
load optimal interfaces for both open and closed systems.
Thus, we are able to generate globally load optimal interfaces
for C;, even without knowledge of other components sched-
uled with it. Following theorem describes the significance of
load optimal interfaces.

Theorem 3 Consider a hierarchical system H = (C,S), with
Ci,...,Cyy, denoting all the components in the tree rooted at C.
Let interfaces T = {Z¢,,...,Zc,, } of all these components be
globally load optimal. Also, let T denote a load optimal inter-
face for C generated from T. If each C; is scheduled exclusively
on an uniprocessor having bandwidth LOADICi (= b;), then
C is not schedulable on any uniprocessor having bandwidth b
that is smaller than LOADz,..

Proof We use induction on the height of node C.

Base Case [C is a task set] : In this case LOADz, =
LOADg, and by definition LOAD¢ is the smallest bandwidth
required from an uniprocessor platform to schedule C.

Induction Case [C is at height n + 1] : Let S’ denote
the scheduler used by component C to schedule its workload,
and Z,, denote the set of globally load optimal interfaces of all
components at height n. Then, from Definitions 3 and 4 we
get LOADIC = LOADImS/ and LOADIC < LOADI;WSI,
where Z/, denotes any other set of locally load optimal in-
terfaces of all components at height n. Also, by defini-
tion, LOADz, denotes the smallest bandwidth required from
an uniprocessor platform to successfully schedule component
(Z,,8'). Consider an uniprocessor platform having band-
width b < LOAD7z,. Then, some interface Z¢, € Z,, is not
schedulable on this platform, i.e., bandwidth of the uniproces-
sor available for scheduling workloads in Z¢, is smaller than
LOADICZ. But from induction hypothesis, b;(= LOADICL)
denotes the smallest bandwidth required from an uniprocessor
platform to successfully schedule component C;. This proves
the result. ]

Demand-based optimality. Consider a hierarchical sys-
tem defined as follows. C; = ({(6,1,6),(12,1,12)}, EDF),

Ca = ({(5,1,5),(10,1,10)},EDF), and C; =
({Cy,C2},EDF). Consider the interfaces Zg, =
(1,0.25,1),Z¢c, = (1,0.3,1), and Zp, = (1,0.55,1).
It is easy to see that LOADIC1 = LOAD¢,,

LOADz., = LOADc,, and LOADz., = LOADz gpr,
where 7' = {Z¢,,Z¢,}. Hence Z¢, and Zc, are globally
load optimal. The demand bound functions of these inter-
faces and components are plotted in Figure 2(a). However,
as seen in Figure 2(b), LOADIC3 > LOADz, where
T = {(6,1,6),(12,1,12),(5,1,5),(10,1,10)}. Assuming
vertical synchronization, it is easy to see that total resource
requirements of Z is equal to the total resource requirements
of components C; and C, combined. Therefore, Z is an
interface for component Cs. This shows that even though
Zc, is only feasible on an uniprocessor platform having
bandwidth LOADICS, component Cj itself is feasible on a
platform having bandwidth strictly smaller than LOADz,_.
Thus, although a load optimal interface minimizes the average
resource utilization, it still incurs overheads with respect to
the actual demand of underlying component.

We now introduce the notion of demand optimality, which
characterizes interfaces that are both necessary and sufficient
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Figure 2. Load vs. demand optimality

for component schedulability. We define two notions of de-
mand optimality; local optimality for open systems and global
optimality for closed systems. When the hierarchical system
under consideration is an open system, a component in the sys-
tem is not aware of other components scheduled with it. There-
fore, when generating an interface for such a component, we
must consider the worst-case interference from other compo-
nents scheduled with it. This interference is defined as follows.

Definition 5 (Zero slack assumption) Consider component
Ci = {{Ci,...,Cs, },Si). Let ; denote the set of interfaces
of workload {C;,, ...,C;,, }. If C; is part of an open hierarchi-
cal system and T ; is schedulable under S;, then we assume that
the schedule of Z; has zero slack. In other words, the amount
of resource supplied to C; is such that each job in I; finishes
as late as possible, subject to satisfaction of all job deadlines.

The following definition then gives our notion of demand op-
timality for open systems.

Definition 6 (Local demand optimality (open systems))
Given a constrained deadline periodic task set, its interface
(task set itself) is defined to be locally demand optimal. Con-
sider component C; = ({C;,,...,C;, },Si). Let I; denote
the set of interfaces of workload {C;,,...,C;, }. Interface
Ze, is locally demand optimal iff assuming zero slack for C;
(and hence for L¢,), schedulability of T, under S; implies
Sfeasibility of I¢,.

If Z¢, is locally demand optimal, then the interface genera-
tion process does not introduce any overheads with respect to

the resource requirements of Z;, assuming zero slack in the
schedule. Locally demand optimal interfaces need not always
lead to global optimality, because the actual interference from
other components may be smaller than the worst-case scenario
considered here. Therefore, in closed systems, where we have
accurate knowledge of this interference, we can define global
demand optimality as follows.

Definition 7 (Global demand optimality (closed systems))
Given a constrained deadline periodic task set, its interface
(task set itself) is defined to be globally demand optimal.
Consider a hierarchical system (C,S). Let Zc denote an
interface for C generated using some set of interfaces for all
components in C. ¢ is globally demand optimal if and only
if, whenever there exists interfaces for all the components
in C such that the components are schedulable using those
interfaces, L¢ is feasible.

Intuitively, the significance of globally demand optimal inter-
faces can be explained as follows. Given a hierarchical system,
if it is possible to schedule all the tasks in the system using
some set of interfaces, then globally demand optimal interfaces
will also schedule them.

3. Load optimal interfaces
3.1. Interface generation technique

The following definition presents an interface that is glob-
ally load optimal in both open and closed hierarchical systems.

Definition 8 (Schedulability load based abstraction) If C;
is a constrained deadline periodic task set then abstraction
Ze, = C;. Otherwise I¢, = {r; = (1,LOADyw, s,,1)},
where S; denotes scheduler used by C;, and W, denotes the
set of schedulability load based abstractions of C;’s children.
T; is a periodic task, and the release time of its first job
coincides with the release time of the first job in component C;
(vertical synchronization).

We now prove that the schedulability load based abstraction
Zc, is a globally load optimal interface for component C;.

Lemma 4 Given a component C; = (T,S;), where T =
{T1,...,Tn} is a constrained deadline periodic task set, T,
as given by Definition 8 is an interface for C;.

Proof Let us define Ly = {t}; to be the sequence of non-
decreasing time units measured from the point when the first
job in 7 is released. Each ¢; in the sequence is such that there
are no jobs of 7 with non-zero remaining executions, assum-
ing 7 executes under S; whenever Z¢, executes. We prove this
lemma by induction on this sequence.

Base case [¢1] : In the interval (0,%;], jobs of 7 are al-
ways executing whenever Z¢, is executing. This means that
the amount of resource used by 7 in (0, ¢1] is exactly equal to



the amount of resource used by Z¢, in that interval. By Defini-
tion 8, the amount of resource used by Z¢, in an interval (0, '],
forall ¢ <y, is LOADy s, xt’ (vertical synchronization).
If S, = EDF the amount of resource required by 7 to meet
all job deadlines up to ¢’ is upper bounded by dbfc, (¢'). The
result follows because LOAD7y s, xt' > dbfc,(¢') by defi-
nition. If §; = DM, the amount of resource required by 7°
to meet all job deadlines up to ¢’, such that these are jobs
of task 7, is upper bounded by ¢’ x min, ¢(o,p, W

The result then follows because LOADy s, xt' > t' x

) rbfe, k(tk)
maXg=1,...,n My, €(0,Dy] Ttk

Induction case [¢,, 1] : By induction hypothesis, all job
deadlines in the interval (0, t,,] are satisfied by jobs of Z¢, re-
leased before t,,. Observe that ¢, > ¢, + 1, and the first
release of any job of 7 after t¢,, (¢,) can only occur at or af-
ter t, + 1. Also, since period of task 7; in interface Z¢, is 1,
some release of job of Z, after ¢,, will coincide with ¢,.. Using
logic similar to the base case, we can show that all deadlines
of jobs of 7 in the interval (¢,,¢,+1], are satisfied by jobs of
Zc, released in that interval. This combined with the induction
hypothesis proves the result. O

Theorem S Interface Z¢, generated using Definition 8 is an
interface for component C;.

Proof We prove this theorem by induction on the height of C;
in the underlying subtree rooted at C;.

Base case [C; is a task set] : Definitions 2 and 8.

Induction case [C; is at height n + 1] : If n = 1, then
C;’s child is a task set, and from induction hypothesis and
Lemma 4 we directly get the result. If n > 1, then let
C; = ({Ci,,...,C;, },Si). Lemma 4 can again be used to
show that Z¢, is an interface for the component (Z;, S;), where
T, is the set of interfaces of workload {C;,,...,C;, }. But, by
induction hypothesis, each Z c;, € 7, is itself an interface for
Ci,, and therefore Z¢, is an interface for C;. a

We now prove that interface Z¢, is globally load optimal.

Theorem 6 Given component C = ({Cy,...Cs,...,Cp},S),
ifinterfaces Tc and T = {Z¢,,...,Z¢c,,...,Z¢c, } are as given
by Definition 8, then L, is a globally load optimal interface.

Proof We prove this theorem by induction on the height of C;
in the underlying subtree rooted at C.

Base Case [C; is a task set] : In this case, Z¢, is globally
load optimal directly from Definitions 4 and 8.

Induction Case [C; is at height n + 1] : From induc-
tion hypothesis we get that each Z¢, is locally load opti-
mal (interfaces of C;’s children of are globally load opti-
mal). Since W¢ = Z, LOADy, s = LOADz s. Also,
since Zc = (I,LOADWC75, 1), LOADIc = LOADLS and
Z¢ is locally load optimal from Definition 3. Furthermore,
LOADz s = LOAD7, the feasibility load of Z. This is be-
cause all the tasks in Z have period and deadline equal to 1,

and EDF and DM are optimal schedulers for such tasks. There-
fore, LOADz, = LOADz < LOADz/ s, where Z' denotes
any other set of locally load optimal interfaces for C’s work-
load. a

3.2 Discussions

Complexity. Interfaces in Definition 8 can be computed
in pseudo-polynomial time with respect to input specifica-
tion. LOADyy, s, can be computed using Equation (2) or
(4). Since these equations must be evaluated for all values
of ¢ in the range (0, L] under EDF, and (0, D,] for each task
7; € W, under DM, interface Z¢, can be generated in pseudo-
polynomial time. Also, interface Z¢, only has O(1) storage
requirements when compared to the input specification.

Task model. Although we have considered periodic tasks
in this paper, interface generation technique in Definition 8§
also generates load optimal interfaces for constrained deadline
sporadic tasks, assuming all job release times are multiples of
the basic time unit we defined in Section 2. The only modifi-
cations required in Definition 8 are that, (1) task 7; is sporadic,
and (2) 7, is released whenever there are unfinished jobs active
in C;, subject to these releases satisfying the minimum separa-
tion criteria. Using similar proof techniques, we can show that
Theorems 5 and 6 hold for such interfaces as well.

Preemptions. In this paper, we have ignored preemp-
tions because Theorems 1 and 2 are agnostic to such over-
heads. Existing studies assume preemption overheads can be
upper bounded by a function that is monotonically decreas-
ing with respect to task periods in interfaces (e.g., [15, 8]).
Under this assumption, our interface generation technique in
Definition 8 will incur maximum preemption overhead. How-
ever, the technique can be modified such that task 7; =
(k, LOADw, xk, k), where k is any divisor of the GCD
(greatest common divisor) of periods and deadlines of tasks
in {We, } U{We, |7 # i}. Here {C;|j # i} denotes other
components scheduled with C;. Thus, we can generate load
optimal interfaces without forcing interface tasks to have pe-
riod one.

Comparison to resource model based interfaces. It is
well known that the feasibility load of interfaces generated us-
ing bounded delay [9, 21] or periodic [15, 20] resource mod-
els, is lower bounded by the schedulability load of underlying
component. In fact, this schedulability load is achieved only
when period II for periodic models, or delay § for bounded de-
lay models, is 0 (see Theorems 7 and 8 in [20] and Theorems 4
and 5 in [21]). Note IT or 6 = 0 indicates that the interface
is not realizable, because EDF and DM cannot schedule tasks
generated from such models. In all other cases, the feasibility
load of interface is strictly larger than the schedulability load of
component. Hence, these interfaces are not load optimal. The
reason for this sub-optimality is lack of vertical synchroniza-
tion between the component and its interface. EDP resource
model based interfaces can achieve load optimality whenever
deadline of the model is equal to its capacity (A = ©), and pe-
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Figure 3. Partial schedule of component C;

riod IT = 1. Correctness of this statement follows from the fact
that (1) in any time interval of length II this model guarantees
© units of resource, and (2) transformation from EDP model
to periodic task is demand optimal (see Equation 6 and Defini-
tion 5.2 in [7]). Note that I can also take values as described in
the previous paragraph to account for preemption overheads.

4. Demand optimal interfaces

In this section, we present an example to show that size
of demand optimal interfaces can be exponentially larger than
the input specification. We then discuss scenarios under which
load optimal interfaces also satisfy demand optimality.

4.1. Hardness of demand optimality

Before we present our example, we introduce some
additional definitions. A constrained deadline, asyn-
chronous periodic task set is specified as 7 = {r; =
(01,T1,Cq,Dyq),...,7n = (Op, Ty, Cp,D,)}, where each
T, 1s a periodic task with offset O;, exact separation T;, worst
case execution requirement C;, and relative deadline D;, such
that C; < D; < T;. For each task 7, its jobs are released
at times O;,0; +T;,0; +2T,, ..., and each job requires C;
units of resource within D; time units. We use these asyn-
chronous tasks to abstract resource demand in our example.

Consider components C; = {({r; = (7,1,7),72 =
(9,1,9)},pM), and C = ({C1,C2},EDF). Here, we assume
that component Cs interferes with the execution of component
Cq in an adversarial manner (zero slack assumption). In com-
ponent Cy, jobs of task 71 have a higher priority than jobs of
task 7o. Furthermore, because of zero slack assumption, each
job of 7o will finish its execution only by its deadline. As a
result, some jobs of 7 are required to finish their executions
much before their deadline. For instance, consider the job of
T4 released at time 18, with deadline at 27. Since schedule of
C1 has zero slack, this job finishes its execution requirements
only by time 27 (its latest possible finish time). Then, the job
of 7, released at time 21 must also finish its execution by time
27 under DM. This scenario is shown in Figure 3.

The amount of resource required by jobs of task 7; in the
interval (0, LCM], is given in Figure 4(b). Here, LCM(= 63)
denotes the least common multiple of periods 7 and 9. Also, re-
lease constraints on these demands are given in Table 4(a). As
per above discussion, these demands and release constraints

Interval | Demand
(0,7 1
(7,9 1

(14, 18] 1

(21, 27] 1

(28, 35] 1

(35,42 1

(42,45 1

(49,54 1

(56,63 1

(a) Demand intervals for 71

10 T T

Demand

0 | | | | | |
0 10 20 30 40 50 60

Time

(b) Demand function of 71

Figure 4. Demand of task 7; in component C;

are exact in the sense that they are necessary and sufficient
to guarantee schedulability of 7;. Then, any locally demand
optimal interface must reproduce this demand function and
release constraints exactly to abstract 7;. Suppose an asyn-
chronous periodic task 7 = (O, T, C,D) is used to abstract
the resource requirements of some jobs of 71. Then, O and D
must be such that (O, O + D] is one of the entries in Table 4(a).
Also, T must be such that, for all £, O +kT = [ LCM +a and
O+kT+D = ILCM +b for some ! > 0 and entry (a, b] in
the table. It is easy to see that these properties do not hold
for any T < 63. This means that task 7 can be used to ab-
stract the demand of only one job of 7; in the interval (0, 63].
Therefore, at least %ﬁw = 9 tasks are required to abstract the
demand of all jobs of 7. This shows that the exponential com-
plexity of demand optimal interfaces cannot be avoided for the
example under consideration. Since interference from other
components can be adversarial in open and closed systems, this
example illustrates necessity of increased interface size in both
these cases.

4.2. Discussions

Comparison between locally demand optimal and load
optimal interfaces. Consider a component C = (7, EDF),
where 7 = {Tl = (Tl, Cl,Dl), ey T = (Tn, Cn,Dn)}
is a constrained deadline periodic task set. From Lemma 4
we get that (1, LOAD¢, 1) is a load optimal interface for C.
Also, from discussions in Section 3.2, we get that Z, =
(GCD,LOAD¢ x GCD, GCD) is also a load optimal inter-



face for C, where GCD is the greatest common divisor of
Ty,...,T,,D1,...,D,. Consider the case GCD = T; =
...=T, =D7=...=D,. In this case, it is easy to see that
¢ also satisfies the notion of local demand optimality (Defi-
nition 6). This is because dbfc = dbfz,. On the other hand, if
T; # D, for some 7 or T; # T; for some 4 and j, then we can
show there exists ¢ such that dbf¢(¢) < LOAD¢ xt = dbfz,
and t = k x GCD for some integer k. For instance, if T; # D,
for some i, then at ¢ = LCM this property holds, where LCM
denotes least common multiple of T+q,...,T,. Similarly, if
T; # T, for some ¢ and j and D; = T; for all ¢, then
at ¢ = min;—, T, this property holds. Hence, Zc does
not satisfy the property of local demand optimality whenever
T; # D, for some i or T; # T; for some 4 and j. Similar argu-
ments also apply to components that use DM scheduler. Thus,
load optimality also results in local demand optimality in one
extremely restrictive case.

Comparison between globally demand optimal and load
optimal interfaces. Consider a component C, with
C1,...,Cp, denoting all the elementary components in the tree
rooted at C. Let Cy,...,C,, be the only components in C
with periodic tasks in their workloads, and Sy,...,S,, de-
note their respective schedulers such that each S; = EDF.
Also, let Z¢ denote a load optimal interface for component
C. Then, assuming all interfaces in this system have period
one, we get that LOADz, = >_", LOADc, s, from Theo-
rem 3. Now, suppose there exists a time ¢ such that for each
i, LOADg, s, xt = dbf¢,(¢t). Note that all the task sets
have their maximum load for the same time interval length.
Then, in this case, Z¢ is also globally demand optimal, be-
cause ) ;- LOADg, s, is indeed the minimum bandwidth re-
quired from an uniprocessor platform to schedule C. On the
other hand, if such a ¢ does not exist or if some S; is DM, then
>, LOADg, s, can be strictly larger than the minimum re-
quired bandwidth (for instance, see example in Section 2.3). In
this case, Z¢ is not globally demand optimal.

5 Conclusions and future work

In this paper we introduced two notions of resource opti-
mality in hierarchical systems. We proposed efficient tech-
niques to generate load optimal interfaces, which characterize
optimality with respect to average resource requirements. Each
load optimal interface comprises of a single task, and hence has
O(1) storage requirements when compared to the input speci-
fication. For demand optimality, we showed using an example
that interfaces are hard to generate.

Although, in general, the complexity of a demand optimal
interface is unavoidable (as shown by the example in Sec-
tion 4.1), demand imposed by a set of tasks in the interface
may sometimes be represented by a smaller set of tasks, re-
ducing the size of the interface. An interesting area of future
work is to characterize the cases when such a reduction is pos-
sible.
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