
Bounding Preemptions under EDF and RM Schedulers

Technical Report: MS-CIS-06-07

Arvind Easwaran, Insik Shin, Insup Lee, Oleg Sokolsky

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA, 19104 USA

{arvinde, ishin, lee, sokolsky }@cis.upenn.edu

Abstract

Assurance of timing requirements from a real-time system schedule can be obtained using schedulability analysis.
Existing analysis techniques ignore the preemption overhead incurred by the system, when the tasks are scheduled
using preemptive schedulers. Preemptive schedulers can preempt the execution of a real-time task when a higher
priority task is released by the system. Every job preemption will then induce an execution overhead because of the
need to swap task contexts. In this paper we derive bounds on the number of preemptions incurred by a real-time
task system scheduled using RM or EDF schedulers. We only consider task systems which consist of periodic task
models where the tasks can be released asynchronously. Job response time equations developed in this paper, for a
given task arrival pattern, are used in bounding the preemptions. We then modify schedulability conditions for RM
and EDF schedulers to account for preemption overheads, using these preemption bounds. Simulation results show
that the bounds developed in this paper are tighter than previously known preemption bounds by a factor of upto
90%. We also provide an estimate for the number of preemptions and show using simulations that this estimate is
very close to the actual number of preemptions.

1 Introduction

Correctness of a real-time system depends not only on logical correctness but also on timeliness. A real-time
system is said to be schedulable according to a scheduling algorithm, if the timing constraints of workloads within
the system can be always satisfied under the scheduling algorithm with given available resources. Schedulability
analysis, which determines whether or not a system is schedulable, has been one of the most fundamental research
problems in the real-time systems community. Since Liu and Layland [13] showed the optimality of the earliest
deadline first (EDF) and rate-monotonic (RM) algorithms for dynamic- and fixed-priority preemptive uni-processor
scheduling, schedulability analysis has been extensively studied for these two algorithms [13, 10, 3, 2, 5]. A common
drawback shared by those previous studies [13, 10, 3, 2, 5] is that their techniques do not incorporate preemption
overheads into schedulability analysis.

In preemptive processor scheduling, the scheduler may suspend the execution of a less urgent task and give the
processor to a more urgent task. During preemption, the execution state or context of the preempted task must be
stored for later use and the context of the preempting task must be loaded. We use the term preemption overhead
to mean the time required to complete this overhead of work to be done during preemption. This preemption
overhead must be accounted for in the schedulability analysis of real-time systems because it consumes real-time
resource.

In addition to schedulability analysis, preemptions are also important in computing cache miss delays. For
real-time systems that use instruction and data caches, cache miss delay adversely affects the worst case execution
time estimates for real-time tasks. Bounding this delay is then important in providing timing assurances for the
system. Since caches are shared among real-time tasks, task preemptions increase the cache miss delay. When a
different task begins execution due to preemption, some of the data in the caches will become irrelevant. Hence,

1

to accurately compute the cache miss delay within a time interval, it is then necessary to know the number of
preemptions occurring in that interval.

The periodic task model [13] is a well-known deterministic real-time task model. With its various extension,
this model characterizes accurately many hard real-time applications, such as avionics and digital control where
accurate control requires continual sampling and processing of data. In this paper, we assume a periodic real-time
task system consisting of periodic, independent tasks with deadline equal to period. The task system is assumed
to be scheduled using either RM or EDF scheduler. Further, each real-time task is assumed to be released with
an initial release phase, and periodically thereafter based on the “as soon as” arrival pattern [13]. Asynchronous
release of tasks in a task system can be characterized using the initial release phase of tasks. As will be seen later
in the paper, bounding the number of preemptions in a task system requires computation of response times of jobs.
For a periodic task model, these response times can be computed in a simple manner using iterative equations.
Task dependences complicate response time computation because a task can be released only after all the tasks
on which this task is dependent finish execution. Since, in this paper we focus on deriving equations for bounding
the number of preemptions, we have assumed independent tasks. Dependent tasks can be considered in our model
by using task offsets, which can be bounded using task dependences, in response time equations. Restricting the
deadline to be same as period simplifies presentation of the paper; equations given in this paper can be easily
modified to model tasks with arbitrary deadlines.

In this paper, we present upper as well as lower bounds on the number of preemptions occurring in a time
interval for a given real-time task system. We have developed response time equations that compute response time
of jobs given a task arrival pattern. We provide approximations for the response time of a job in order to avoid
simulating the task system. Depending upon assumptions on the interference of higher priority workload released
prior to the release time of a job, we have developed upper and lower bounds for the response time of the job. These
response time bounds are then used to compute the bounds on the number of preemptions. Simulation results
show that for a variety of real-time task systems, the preemption bounds derived in this paper are tighter than
any known bounds. We have considered four task system parameters for the simulation experiments; utilization,
number of tasks, scheduler (RM or EDF) and utilization distribution skew. We also provide an estimate for the
number of preemptions by using only the lower bound for the response times of jobs. Simulation results show that
this estimate is very close to the actual number of preemptions. We have then modified schedulability tests for RM
and EDF schedulers using the preemption bounds developed in this paper, to account for preemption overheads
incurred by the task system.

Related Work. Bounding the number of preemptions plays an important role in the analysis of real-time
systems, particularly, in the analysis involving preemption, such as schedulability analysis [13], worst-case response
time computations [11, 17, 15], cache miss delay computations [16, 14] etc. Loose upper bounds have often been
used in these analyses in the past [8, 9, 6, 12, 1, 16, 14]. Under the assumption that every release of a job
will result in a preemption, a very loose upper bound for the number of preemptions has been used for worst-case
response time analysis under RM scheduling [8, 6] and cache miss delay computation [9, 16]. Estimated preemption
bounds have also been used for bounding the cache miss delay in data caches [14]. Their estimate is tighter than
the aforementioned upper bound on an average, but is not an upper bound. In [9] a bound on the number of
preemptions is obtained by formulating an optimization problem for maximizing the number of preemptions under
constraints of total number of released tasks. This will again give a loose upper bound as in [16]. In this paper,
we present upper bounds on the number of preemptions for task systems that use RM or EDF schedulers, and our
upper bound is tighter than previously known bounds.

Any real-time system analysis involving preemption can be made more precise with our preemption bounding
technique. For example, in a compositional framework using periodic resource model abstractions, preemption
overheads at each level can increase the resource demand of the system [1, 12, 7]. Hence it is necessary to
bound preemption overheads in the schedulability analysis of such hierarchical systems. In [12], the authors have
formulated the schedulability analysis problem for hierarchical systems, taking into account preemption overheads.
In this formulation, they assume that the preemption cost over time is known for hierarchical systems without
specifying how to obtain this cost. Upper bound on the number of preemptions developed in this paper can be
used in their formulation to bound the preemption overhead incurred by the system.

The rest of the paper is organized as follows. Section 2 gives the system model and Section 3 derives the response
time bounds for jobs. Section 4 develops equations to bound the number of preemptions in a task system using
the response time bounds. Section 5 modifies RM and EDF schedulability conditions to account for preemption

2

overheads. Section 6 describes results comparing the preemption bounds developed in this paper with the existing
bounds as well as with the actual number of preemptions generated using simulation. Section 7 concludes the
paper and discusses future work. Bounding the number of preemptions plays an important role in the analysis of
real-time systems, particularly, in the analysis involving preemption, such as schedulability analysis [13], worst-case
response time computations [11, 17, 15], cache miss delay computations [16, 14] etc. Loose upper bounds have
often been used in these analyses in the past [8, 9, 6, 12, 1, 16, 14]. Under the assumption that every release of a job
will result in a preemption, a very loose upper bound for the number of preemptions has been used for worst-case
response time analysis under RM scheduling [8, 6] and cache miss delay computation [9, 16]. Estimated preemption
bounds have also been used for bounding the cache miss delay in data caches [14]. Their estimate is tighter than
the aforementioned upper bound on an average, but is not an upper bound. In [9] a bound on the number of
preemptions is obtained by formulating an optimization problem for maximizing the number of preemptions under
constraints of total number of released tasks. This will again give a loose upper bound as in [16]. In this paper,
we present upper bounds on the number of preemptions for task systems that use RM or EDF schedulers, and our
upper bound is tighter than previously known bounds.

Any real-time system analysis involving preemption can be made more precise with our preemption bounding
technique. For example, in a compositional framework using periodic resource model abstractions, preemption
overheads at each level can increase the resource demand of the system [1, 12, 7]. Hence it is necessary to
bound preemption overheads in the schedulability analysis of such hierarchical systems. In [12], the authors have
formulated the schedulability analysis problem for hierarchical systems, taking into account preemption overheads.
In this formulation, they assume that the preemption cost over time is known for hierarchical systems without
specifying how to obtain this cost. Upper bound on the number of preemptions developed in this paper can be
used in their formulation to bound the preemption overhead incurred by the system.

2 System Model

In this paper, we consider a periodic real-time task system that consists of a periodic task set scheduled by earliest
deadline first (EDF) or rate-monotonic (RM) scheduler [13]. The periodic task system T S is characterized by a
tuple 〈T ,A〉, such that T denotes a set of periodic tasks Tk, i.e., T = {T1, · · · , Tn}, and A denotes the scheduling
algorithm for the task set T , where A = EDF/RM . Each periodic task Tk is defined by Tk = (pk, ek, φk), where pk

is the period, ek is the worst-case execution time, and φk is the phase (0 ≤ φk < pk), such that the first release of
Tk occurs at φk and each subsequent release of Tk occurs periodically with a separation of pk between consecutive
releases. We assume that each periodic task Tk is independent and preemptable at any time instant. Further, the
relative deadline for each task Tk is assumed to be pk.

Each release of task Tk is called a job. Let Jk,t denote a job of task Tk whose release occurs at time instant t.
The start time of a job Jk,t is the length of the interval from its release instant to the time it begins execution.
The response time of a job Jk,t is the time taken by the job to finish ek units of its execution starting from its
release time. We will use the following notations for jobs.

• R(Jk,t) : the release time of job Jk,t, which is t,

• D(Jk,t) : the deadline of job Jk,t, which is t + pk,

• ST (Jk,t) : the start time of job Jk,t,

• RT (Jk,t) : the response time of job Jk,t,

• PJk(t′) : the most recently or previously released job Jk,t of task Tk prior to time instant t′, where t′ ≥ φk +1.
That is, PJk(t′) represents the job Jk,t such that no job of task Tk is released in the interval (t, t′). We will
use the notation PJk(t′) to denote a job Jk,t of Tk which can execute in the interval [t′ − 1, t′). We can
compute such t as follows:

t = b
(t′ − φk − 1)

pk

cpk + φk.

In preemptive scheduling, the execution of a less urgent job can be suspended in order to execute a more urgent
job. When the more urgent job completes, the less urgent job can resume its execution.

3

������������

������������
������������

������������ 	�	
	�	

�

�

������������
�
�

�
�

������

������������
����������
���������� ������������

������������ ������������

������������

�����������������
�����
������

������ � � !�!
!�!
"�""�"#�##�#$�$$�$

0 5 10 15 20

overhead overhead

(6, 2, 0)

(9, 2, 0)

(10, 3, 0)

J3,0

J1,6

Figure 1. Preemption Overhead

Observation 2.1 In preemptive priority-based scheduling, a preemption occurs at time instant t′ if and only if

1. a job Ji,t′ of task Ti is released at time instant t′ (Ji,t′ exists),

2. a job Jk,t of task Tk was executing in the time interval [t′ − 1, t′) and did not finish its execution at time t′,
and

3. Ji,t′ has a higher priority than Jk,t.

Every preemption will incur an execution overhead which is required for saving the context of the preempted job
as well as for loading the context of the preempting job. As shown in Figure 1, assuming the tasks are scheduled
using RM scheduler, job J1,6 will incur a preemption overhead for storing the context of the preempted lower
priority job J3,0, as well as for loading the initial context of job J1,6 itself.

As an upper bound for the number of preemptions in a task system, existing real-time analyses [8, 9, 6, 16]
use a very loose bound which is the number of released jobs. For the task system T S = 〈{T1 = (6, 2, 0), T2 =
(9, 2, 0), T3 = (10, 3, 0)}, RM〉 shown in Figure 1, these analyses would use an upper bound of 9 for the number of
preemptions in the time interval [0, 20] (9 is the number of jobs released in this interval). As can be seen in the
figure, this is indeed a very loose upper bound because the actual number of preemptions occurring in this interval
is only 2.

3 Job Response Time

The release of a job Ji,t′ will result in a preemption if and only if all the conditions given in Observation 2.1
in Section 2 are satisfied. Condition 2 in Observation 2.1 requires that a job having priority lower than Ji,t′ must
execute in the interval [t′ − 1, t′). To determine whether a particular job is executing in some time interval for
a given task system, we can either simulate the execution of the task system or analytically compute the time
intervals in which the job executes. In this paper we will use job response time equations to determine whether
a particular job executes in some interval. A job Jk,t released before t′ and having response time greater than t′

will execute in the interval [t′ − 1, t′), if the response times of all jobs released before t′ and having priority higher
than Jk,t less than or equal to t′ − 1. In this section we will derive response time and start time equations for jobs
scheduled using RM and EDF schedulers.

3.1 Response Time Approximations

Worst case response time of a task given a periodic task system can be computed using equations given in [11, 17]
for RM scheduler and in [15] for EDF scheduler. In this paper we are interested in deriving similar equations for
the response time and start time of a job. Since the response time of a job can be much smaller than the worst case
response time of the corresponding task, using job response times for computing preemption bounds will in general

4

result in tighter bounds. Computing the exact response time or start time of a job Jk,t requires accurate knowledge
of the interference of higher priority jobs released before t on the execution of Jk,t. In order to avoid task system
simulation, we will approximate this interference caused by higher priority workload released before time t. The
best-load response time is obtained by assuming zero interference from higher priority jobs released before time
t and the worst-load response time is obtained by assuming maximum possible interference from higher priority
jobs released before time t. The best-load response time of a job Jk,t is the response time of the job obtained
by assuming that jobs PJl(t) that have priority higher than Jk,t complete execution before t. The worst-load

response time of a job Jk,t is the response time of the job obtained by assuming that jobs PJl(t) that have
priority higher than Jk,t execute as much as possible after time t without missing deadlines. Best-load start time
and worst-load start time of jobs can be described similarly.

Figure 2 shows a schedule for a task system T S = 〈{T1 = (3, 1, 0), T2 = (5, 1, 0), T3 = (7, 1, 0), T4 = (10, 2, 0)}, RM〉.
In this schedule, interference from higher priority jobs J1,9, J2,5 and J3,7 on the execution of job J4,10 is assumed to
be 0, i.e., jobs J1,9, J2,5 and J3,7 have all finished execution by time 10. Similarly, Figure 3 shows a schedule for a
task system T S = 〈{T1 = (3, 1, 0), T2 = (5, 1, 0), T3 = (7, 1, 0), T4 = (10, 2, 0)}, RM〉 where maximum interference
is assumed for the execution of job J4,10 from higher priority jobs J1,9, J2,5 and J3,7. In the figure, jobs J1,9 and
J3,7 are assumed to execute completely after time 10 while job J2,5 is assumed to finish execution before time 10.
It is not possible for job J2,5 with relative deadline 10 to execute after time 10 without missing its deadline.

3.2 Job Response Time under RM Scheduler

In this section we will derive response time equations for a task system that uses RM scheduler. Let T S =
〈{T1 = (p1, e1, φ1), · · · , Tn = (pn, en, φn)} , RM〉 be the task system and let the priorities of these tasks be such
that task Ti has higher priority than task Tj if and only if i < j. Let BRTRM (Jk,t) denote the best-load response
time, as described in Section 3.1, of a job Jk,t in task system T S . Iterative equation for computing BRTRM (Jk,t)
is then given by,

BRT
(0)
RM (Jk,t) = ek

BRT
(i)
RM (Jk,t) =

∑

l<k

{(b
(BRT

(i−1)
RM (Jk,t) + t − 1 − φl)

pl

c − b
(t − 1− φl)

pl

c)el} + ek (1)

Response time BRTRM (Jk,t) is given by that value of BRT
(i)
RM (Jk,t) which satisfies the condition BRT

(i)
RM (Jk,t) =

BRT
(i−1)
RM (Jk,t). BRT

(0)
RM (Jk,t) in Eq. (1) assumes zero interference from higher priority load released before time

t. The iterative equation then computes the higher priority load in the current execution window of job Jk,t, such
that the load is released some time at or after time t. Since schedulability condition requires that the response time
of job Jk,t be less than or equal to D(Jk,t) = t+pk, computation of BRTRM (Jk,t) takes time O(npk), assuming T S
is schedulable. As shown in Figure 2, assuming zero interference from higher priority jobs J1,9, J2,5 and J3,7 on the
execution of job J4,10, we get BRTRM (J4,10) = 4. Iterative equation for the best-load start time, BSTRM (Jk,t),
can be obtained by substituting ek = 0 in Eq.(1).

We now similarly give iterative equations for the worst-load response time of a job scheduled using RM scheduler.
Let WRTRM (Jk,t) denote the worst-load response time, as described in Section 3.1, of a job Jk,t in task set T S .
For each job PJl(t) having priority higher than Jk,t, let emax(PJl(t)) denote the maximum interference that this
job can cause to the execution of Jk,t. Then,

emax(PJl(t)) = max{0, min{el, d
(t − φl)

pl

epl + φl − t −
∑

m<l

(emax(PJm(t)) + (k + 1)em)}} (2)

where k satisfies the condition, d(t− φm)/pmepm + φm + kpm ≤ d(t− φl)/plepl + φl. emax(PJl(t)) is given by the
minimum of el and the size of execution window [t, D(PJl(t))] taking into consideration the interference caused
to the execution of PJl(t) by higher priority load executing in the window. The term emax(PJm(t)) + (k + 1)em

in Eq. (2) gives this interference caused by higher priority jobs of task Tm in the window [t, D(PJl(t))]. Iterative
equation for WRTRM (Jk,t) is then given by,

5

����������
������

������
������

������
������

������
������

	�	�		�	�	

�
�

�
�
 ����������

����������
�
�

�
�

����������

������
���
������
���

���������������
���������������

���������������
���������������

������
���
������
���

������������������ ���������������
��������������� ������������������

������������ ����������
 � � !�!!�!"�""�" #�#�##�#�#

$�$$�$

0 5 10 15 20

(3, 1, 0)

(5, 1, 0)

(7, 1, 0)

(10, 2, 0)

J1,9

J2,5

J3,7

J4,10

Figure 2. RM: Best-load Response Time

WRT
(0)
RM (Jk,t) = ek +

∑

l<k

emax(PJl(t))

WRT
(i)
RM (Jk,t) =

∑

l<k

{(b
(WRT

(i−1)
RM (Jk,t) + t − 1 − φl)

pl

c − b
(t − 1 − φl)

pl

c)el} + WRT
(0)
RM (Jk,t) (3)

Response time WRTRM (Jk,t) is given by that value of WRT
(i)
RM (Jk,t) which satisfies the condition WRT

(i)
RM (Jk,t)

= WRT
(i−1)
RM (Jk,t). WRT

(0)
RM (Jk,t) in Eq. (3) assumes maximum interference from higher priority jobs released

before time t, i.e., for each higher priority job PJl(t), WRT
(0)
RM (Jk,t) adds its maximum interference emax(PJl(t))

to the response time of Jk,t. WRTRM (Jk,t) can be computed in time O(n2 + npk) where O(n2) time is required
to compute the maximum interference for all the higher priority jobs. As shown in Figure 3, assuming maximum
interference to the execution of job J4,10 from higher priority jobs J1,9, J2,5 and J3,7, we get WRTRM (J4,10) = 20.
Iterative equation for the worst-load start time, WSTRM (Jk,t), can be similarly derived by substituting ek = 0 in
Eq.(3).

3.3 Job Response Time under EDF Scheduler

In this section we will derive job response time equations for a task system that uses EDF scheduler. Let
T S = 〈{T1 = (p1, e1, φ1), · · · , Tn = (pn, en, φn)} , EDF 〉 denote a task system. As per the EDF scheduling policy,
job Ji,t has higher priority than job Jj,t′ if and only if D(Ji,t) < D(Jj,t′). To break ties between jobs having the
same deadline, we assume that a job Ji,t has higher priority than another job Jj,t′ having the same deadline as
job Ji,t if and only if i < j. Let BRTEDF (Jk,t) denote the best-load response time of a job Jk,t in the task system
T S. The iterative equation for BRTEDF (Jk,t) is then given as,

BRT
(0)
EDF (Jk,t) = ek

BRT
(i)
EDF (Jk,t) =

∑

l6=k

max{0, (−b
(t − 1 − φl)

pl

c + b
(BRT

(i−1)
EDF (Jk,t) + t − 1 − φl)

pl

c − Il)}el + ek (4)

6

������������
����������
���������� ������

������
������
������

	�		�	

�

�

������
������

�

�
������ ������������ ������������

���������������
������
��� ���������������

���������������

����������
���������� ����������

������

������������

������������

���������������
 � �
 �

!�!�!!�!�!
"�""�"#�##�#$�$$�$

0 5 10 15 20

(3, 1, 0)

(5, 1, 0)

(7, 1, 0)

(10, 2, 0)

J1,9

J3,7

J2,5

J4,10

Figure 3. RM: Worst-load Response Time

where Il is an indicator variable which takes value 1 if and only if the priority of the last job of task Tl considered

in the computation of BRT
(i)
EDF (Jk,t) in Eq. (4) is lower than the priority of job Jk,t.

Il =















0 If (d
(BRT

(i−1)
EDF

(Jk,t)+t−φl)

pl
e)pl + φl < D(Jk,t) or

((d
(BRT

(i−1)
EDF

(Jk,t)+t−φl)

pl
e)pl + φl = D(Jk,t)) ∧ (l < k)

1 Otherwise

(5)

Response time BRTEDF (Jk,t) is given by that value of BRT
(i)
EDF (Jk,t) for which BRT

(i)
EDF (Jk,t) = BRT

(i−1)
EDF (Jk,t).

Given the current execution window [t, BRT
(i−1)
EDF (Jk,t)] of job Jk,t, the iterative equation given by Eq. (4) computes

the load of all higher priority jobs released within this window. BRTEDF (Jk,t) can be computed in time O(npk).
The best-load start time, BSTEDF (Jk,t), can be similarly obtained by substituting ek = 0 in Eq.(4).

Worst-load response time WRTEDF (Jk,t) and worst-load start time WSTEDF (Jk,t), can be derived using
Eqs. (2), (3) and (5). We assume that the job indices for the job set {PJi(t)|i 6= k} are rearranged based on
their priorities in order to make the presentation simpler, i.e., we assume indices are rearranged such that the
priority of job PJm(t) is less than the priority of job PJn(t) if and only if m < n. Then the maximum interference,
emax(PJl(t)), of the higher priority job PJl(t), to the execution of job Jk,t is given by Eq. (2) in Section 3.2.
Iterative equation for WRTEDF (Jk,t) is then given as,

WRT
(0)
EDF (Jk,t) = ek +

∑

l<k

{emax(PJl(t))}

WRT
(i)
EDF (Jk,t) =

∑

l6=k

max{0, (−b
(t − 1 − φl)

pl

c + b
(WRT

(i−1)
EDF (Jk,t) + t − 1 − φl)

pl

c − Il)}el + WRT
(0)
EDF (Jk,t) (6)

Indicator variable Il is given by Eq. (5) in Section 3.2 where BRT
(i−1)
EDF (Jk,t) is replaced with WRT

(i−1)
EDF (Jk,t).

Response time WRTEDF (Jk,t) is given by that value of WRT
(i)
EDF (Jk,t) which satisfies the condition WRT

(i)
EDF (Jk,t)

= WRT
(i−1)
EDF (Jk,t). WRTEDF (Jk,t) can be computed in time O(n2 + npk).

4 Preemption Bounds for Real-Time Task Systems

In this section, we assume that the best-load and worst-load, response and start times for a job PJk(t′) are all
zero for values of t′ less than (φk + 1), i.e., for values of t′ where PJk(t′) is not defined. Also, we will refer to the
response time of a job added to its release time as the absolute response time and the start time of a job added

7

to its release time as the absolute start time of the job. Conditions for the occurrence of a preemption given in
Observation 2.1 indicate that for a preemption to occur at time instant t′,

1. A job Ji,t′ of task Ti must be released at time t′

2. The maximum over absolute response times of all jobs PJk(t′ + 1), that have priority higher than Ji,t′ , must
be less than t′, i.e., no higher priority job was executing in the interval [t′ − 1, t′) or must not be released at
time t′

3. The maximum over absolute response times of all jobs PJk(t′), that have priority lower than Ji,t′ , must be
greater than t′, i.e., some lower priority job must finish execution after t′,

4. The absolute start time of job PJk(t′) for which the maximum in condition 3 was achieved must be less than
t′.

Best-load and worst-load, response and start times of jobs for a task system that uses RM or EDF scheduler
can be computed using equations described in Section 3. In this section we will use these job response times to
derive upper as well as lower bounds for the number of preemptions in a given time interval.

4.1 Preemption Upper Bound under RM Scheduler

An upper bound on the number of preemptions in a time interval can be obtained by counting the number of
jobs released in this interval that will never cause a preemption. A job Ji,t′ will never cause a preemption if and
only if any one of the following conditions is satisfied.

1. The maximum over best-load absolute response times of all jobs PJk(t′ + 1) having priority higher than Ji,t′

is greater than t′. If some higher priority job released on or before time t′ does not complete execution until
after t′ in the best-load case, then under all circumstances this job will complete execution after time t′.
Then, job Ji,t′ cannot cause a preemption in this case.

2. No job PJk(t′), having priority lower than Ji,t′ , has best-load absolute start time less than t′ and worst-load
absolute response time greater than t′. If all the lower priority jobs either begin execution after t′ in the
best-load case or finish execution before t′ in the worst-load case, then none of them can execute in the
interval [t′ − 1, t′). In this case as well, job Ji,t′ will not cause a preemption.

Any job which does not satisfy all of the above conditions can cause a preemption and hence will contribute towards
the upper bound. Let 〈{T1 = (p1, e1, φ1), · · · , Tn = (pn, en, φn)}, RM〉 denote a task system T S where task Ti has
higher priority than task Tj if and only if i < j. We now derive an equation for the upper bound on the number
of preemptions for task system T S . For a job Ji,t′ in the task system T S , the maximum over best-load absolute
response times of all jobs PJk(t′ + 1) having priority higher than Ji,t′ is given as,

HRTJi,t′
= max

k<i
{BRTRM (PJk(t′ + 1)) + R(PJk(t′ + 1))} (7)

Let CTPJk(t′) be equal to the worst-load absolute response time of job PJk(t′) provided its best-load absolute start
time is less than t′, and zero otherwise. CTPJk(t′) is then given as,

CTPJk(t′) =

{

0 BSTRM (PJk(t′)) + R(PJk(t′)) ≥ t′

WRTRM (PJk(t′)) + R(PJk(t′)) Otherwise
(8)

The maximum over worst-load absolute response times of all jobs PJk(t′), having best-load start time less than t′

and priority lower than Ji,t′ , is given as,

LRTJi,t′
= max

k>i
{CTPJk(t′)}

where CTPJk(t′) is given by Eq. (8). An upper bound on the number of preemptions can now be given for the task
system T S using HRTJi,t′

and LRTJi,t′
given in Eqs. (7) and (9) respectively.

8

Definition 4.1 (Preemption Upper Bound) Let PUT S(L) denote an upper bound on the number of preemp-
tions occurring within time interval (0, L) for the task system T S. Let JR(L) = {0 ≤ t1, t2, · · · , tm ≤ L} denote
the set of time instants at which jobs of task system T S are released in the interval (0, L). Further, for each time
instant t′, let JS(t′) denote the set of jobs released at time t′. Then,

PUT S(L) =
∑

t′∈JR(L)

∑

Ji,t′∈JS(t′)

IJi,t′
(9)

where IJi,t′
is an indicator variable which will have value 1 if and only if Ji,t′ can cause a preemption.

IJi,t′
=

{

0 If HRTJi,t′
≥ t or LRTJi,t′

≤ t

1 Otherwise
(10)

Response time computations take O(npk) for each higher priority task and O(n2 + 2npk) for each lower priority
task. The computation time for PUT S(L) is then O(L((n2 + 2n maxk{pk}) × n)) = O(L(n3 + n2 maxk{pk})).

Theorem 4.2 (Preemption Upper Bound) PUT S(L), given by Definition 4.1, is an upper bound on the num-
ber of preemptions occurring within time interval (0, L) for the task system T S.

Proof HRTJi,t′
gives the maximum best-load absolute response time over all jobs PJk(t′+1) having priority higher

than Ji,t′ . Since the actual response time of any higher priority job must be greater than HRTJi,t′
, HRTJi,t′

≥ t′

implies that at least one higher priority job will finish execution after t′. Hence Ji,t′ will start execution after all
the higher priority jobs have finished execution, which means no lower priority job will be executing when Ji,t′

starts execution. Hence job Ji,t′ will never cause a preemption in this case.
LRTJi,t′

gives the maximum worst-load absolute response time over all jobs PJk(t′) having priority lower than
Ji,t′ . In the computation of LRTJi,t′

, only those lower priority jobs are considered such that their best-load absolute
start time is less than t′. Since the actual response time of these lower priority jobs will be less than LRTJi,t′

,
LRTJi,t′

≤ t′ implies no lower priority job which starts execution before t′ will execute until after t′. In this case
as well, job Ji,t′ will never cause a preemption.

This means that IJi,t′
in Eq. (10) is 0 if and only if job Ji,t′ in the task system T S will not cause a preemption.

Thus we have shown that PUT S(L) computes an upper bound on the number of preemptions occurring in the
interval (0, L) for T S .

2

For example, consider the job J2,5 for the task system 〈{T1 = (3, 1, 0), T2 = (5, 1, 0), T3 = (7, 1, 0), T4 =
(10, 2, 0)}, RM〉 shown in Figure 4. The higher priority job J1,3 has a best-load absolute response time of 4. The
lower priority job J3,0 has a worst-load absolute response time of 3 and J4,0 has a worst-load absolute response
time of 9. Both the lower priority jobs start execution before time 5 in the best-load case. Hence the release of
job J2,5 may preempt job J4,0 thereby contributing to the preemption upper bound. Similarly, it can be shown
that the release of job J1,3 in Figure 4 will never cause a preemption and hence it will not contribute to the upper
bound.

4.2 Preemption Lower Bound under RM Scheduler

A lower bound on the number of preemptions occurring within a time interval can be obtained by counting
the number of jobs released in this interval that will surely cause a preemption. A job Ji,t′ will surely cause a
preemption if and only if in the worst case, no higher priority job will execute in the interval [t′ − 1, t′) and some
lower priority job with absolute response time greater than t′ will surely execute in the interval [t′− 1, t′). In other
words, a job Ji,t′ will surely cause a preemption if and only if,

1. the maximum over worst-load absolute response times of all jobs PJk(t′ +1) having priority higher than Ji,t′

is less than t′

9

�����
�����
���
��� �����

�����
���
��� ���

���
���
��� �����

�����
�����
����� 	�	

	�	

�

�
 ���

���
���
���
�
�

�
�

���
���

���
���
���
��� ���

���
���
��� ���

���
���
��� ���

���
���
���

������������������ ������������������ ������������������

�����
�����
�����
����� �����

�����
 � �
 � � !�!

!�!
"�"
"�" #�#�#

#�#�#
$�$
$�$

0 5 10 15 20

(3, 1, 0)

(5, 1, 0)

(7, 1, 0)

(10, 2, 0)

J1,3

J2,5

J3,0

J4,0

Figure 4. RM: Preemption Upper Bound

2. the best-load absolute response time of some job PJj(t
′), having worst-load absolute start time less than or

equal to t′ and priority lower than Ji,t′ , is greater than or equal to t′

3. the worst-load absolute response time of all jobs PJk(t′) having priority higher than PJj(t
′) but lower than

Ji,t′ is less than t′

We now derive the equations for computing the lower bound on the number of preemptions for a task system
T S = 〈{T1 = (p1, e1, φ1), · · · , Tn = (pn, en, φn)}, RM〉. We will give these equations without discussing them
because they are similar to the equations derived for the upper bound in Section 4.1. For a job Ji,t′ , the maximum
over worst-load absolute response times of all jobs PJk(t′) having priority higher than Ji,t′ is given by,

HRTJi,t′
= max

k<i
{WRTRM (PJk(t′ + 1)) + R(PJk(t′ + 1))}

Similarly, the maximum over best-load absolute response times of all jobs PJk(t′) having priority lower than Ji,t′

is given by,
LRTJi,t′

= max
k>i

{CTPJk(t′)}

where CTPJk(t′) is 0 if any one of the following conditions is satisfied.

• PJk(t′) does not start execution until time instant t′ in the worst-load case,

• PJk−1(t
′) has worst-load absolute response time greater than or equal to t′. In this case, there is a chance

that PJk(t′) might not execute in the interval [t′ − 1, t′).

• CTPJk−1(t′) = 0. This means that some higher priority task may execute in the interval [t′ − 1, t′) and hence
PJk(t′) cannot surely execute in that interval.

In all other cases CTPJk(t′) is equal to the best-load completion response time of job PJk(t′). Assuming CTPJi(t′) =
−1 we get,

CTPJk(t′) =



















0 WSTRM (PJk(t′)) + R(PJk(t′)) ≥ t′ or

CTPJk−1(t′) = 0 or

WRTRM (PJk−1(t
′)) + R(PJk−1(t

′)) ≥ t′

BRTRM (PJk(t′)) + R(PJk(t′)) Otherwise

10

����������
���������� ����������

���������� ������������ ����������
������ 	�		�	
�

�
 ����������

����������
�
�

�
�

����������

������
���
������
���

���������������
������
���

���������������
���������������

������
���
������
���

������
���
������
��� ������

���
������
��� ���������������

���������������

���������������
������
���

���������������
 � �
 �

!�!!�!
!�!
"�""�"
"�"

#�#�##�#�##�#�#
$�$$�$
$�$

0 5 10 15 20

J2,5

J1,3

J3,0

J4,0

(3, 1, 0)

(5, 1, 0)

(7, 1, 0)

(10, 2, 0)

Figure 5. RM: Preemption Lower Bound

Definition 4.3 (Preemption Lower Bound) Let PLT S(L) denote the lower bound on the number of preemp-
tions occurring within the time interval (0, L) for task system T S. Let JR(L) = {0 ≤ t1, t2, · · · , tn ≤ L} denote
time instants in the interval (0, L) when jobs in T S are released. Also, let JS(t′) denote the set of jobs in T S
released at time instant t′. Then,

PLT S(L) =
∑

t′∈JR(L)

∑

Ji,t′∈JS(t′)

IJi,t′
(11)

IJi,t′
is an indicator variable with value 1 if and only if job Ji,t′ will surely result in a preemption. IJi,t′

is given
by Eq. (10) in Section 4.1.

Response time computations take O(n2 + npk) for each higher priority task and O(2n2 + 3npk) for each lower
priority task. Since these computations are repeated at each job release, the total computation time for PLT S(L)
is O(L((n2 + npk) × n)) = O(L(n3 + n2pk)).

For example, consider the job J2,5 for the task system 〈{T1 = (3, 1, 0), T2 = (5, 1, 0), T3 = (7, 1, 0), T4 =
(10, 2, 0)}, RM〉 shown in Figure 5. The higher priority job J1,3 has a worst-load absolute response time of 4. The
lower priority job J3,0 has best-load absolute response time of 3 and J4,0 has best-load absolute response time of
9. Further, job J3,0 finishes execution before time instant 5 even in the worst-load case. Hence release of job J2,5

will surely preempt job J4,0 and thus will contribute to the lower bound.

Theorem 4.4 (Preemption Lower Bound) PLT S(L) given in Definition 4.3 is a lower bound on the number
of preemptions occurring within time interval (0, L) for the task system T S.

Proof Similar to the proof of Theorem 4.2 given in Section 4.1.
2

4.3 Preemption Bounds under EDF Scheduler

Bounds on the number of preemptions occurring within a time interval for a task system that uses EDF scheduler
can be computed using equations similar to the ones given in Sections 4.1 and 4.2. Let 〈{T1 = (p1, e1, φ1), · · · , Tn =
(pn, en, φn)}, EDF 〉 be a task system T S. Let PUT S(L) denote the upper bound and let PLT S(L) denote the
lower bound on the number of preemptions occurring within time interval (0, L) for T S. Also, for each job Ji,t′

released in the interval (0, L), let HPJi,t′
denote a subset of the set of jobs {PJk(t′ + 1)|k 6= i} having priority

higher than Ji,t′ . Similarly, let LPJi,t′
denote an ordered subset of the set of jobs {PJk(t′)|k 6= i} having priority

11

lower than Ji,t′ . We assume that all the lower priority jobs {PJk(t′)|PJk(t′) ∈ LPJi,t′
} are assigned fresh indices

based on their priorities, i.e., job PJm(t′) ∈ LPJi,t′
has higher priority than job PJn(t′) ∈ LPJi,t′

if and only
if m < n. PUT S(L) is then given by Definition 4.1 in Section 4.1, where all the response time computations
are done using response time equations for EDF schedulers given in Section 3.3. Similarly, PLT S(L) is given by
Definition 4.3 in Section 4.2, where all the response time computations are done using response time equations
for EDF schedulers given in Section 3.3. Also, HRTJi,t′

is computed using the set of jobs HPJi,t′
and LRTJi,t′

is
computed using the ordered set of jobs LPJi,t′

.

4.4 Estimate for Number of Preemptions

In this section we will modify the preemption upper bound computation given in Section 4.1 to generate an
estimate for the number of preemptions. We will generate this estimate by using only best-load job response and
start times in the upper bound equations given in Section 4.1. Let PET S(L) denote this estimate for the number
of preemptions occurring in the interval (0, L) for a real-time task system T S = 〈{T1, · · · , Tn},A〉. Consider the
worst-load absolute response time, CTPJk(t′), given in Eq. (8). Using the best-load response time for jobs we get,

CTPJk(t′) =



















0 BSTRM (PJk(t′))

+R(PJk(t′)) ≥ t′

BRTRM (PJk(t′))

+R(PJk(t′)) Otherwise

(12)

The preemption estimate, PET S(L), is then given by Definition. (4.1), where LRTJi,t
given in Eq. (9) uses CTPJk(t′)

in Eq. (12). Simulation results given in Section 6 indicate that this preemption estimate is very close to the actual
number of preemptions, for a variety task systems.

5 Schedulability Analysis for RM and EDF Schedulers

In this section we derive conditions for schedulability of a real-time task system under RM or EDF scheduler.
These schedulability conditions will take into consideration the execution overhead incurred by the system as a
result of preemptions. Prior to the start of execution of a real-time job the context for the job must be initialized.
We assume that the execution overhead incurred by the task system for initialization of context of a job is included
in the worst case execution time of the job itself. Hence we will only consider preemption overheads when deriving
the modified schedulability tests in this section.

5.1 Job Response Time with Preemption Overhead

Best-load as well as worst-load, response and start times given in Section 3 do not take into account the execution
overhead incurred by the task system as a result of preemptions. Let δ1 be the execution overhead incurred by a
real-time job that preempts another lower priority job in the system. Since a preemption will increase the execution
time of the preempting job, the interference of this job in the response time of other lower priority jobs in the
system will also increase. Thus for schedulability analysis with preemption overhead, this increased interference
must be incorporated in the response time equations. Also, to determine whether the release of a job Ji,t′ leads
to a preemption, we compute the response and start times of all jobs PJk(t′ + 1) having priority higher than Ji,t′

and all jobs PJk(t′) having priority lower than Ji,t′ as given in Section 4. We are only interested in the response
time and start time of these jobs relative to time instant t′, i.e., we are only interested in knowing whether these
response and start times are greater than, equal to or less than t′. Since, while determining whether a preemption
occurred at time instant t′, we have complete information about preemptions occurring at all time instants upto
t′, we can use this knowledge to bound the preemption overhead in the computation of response and start times.
This means that in order to compute the response time or start time of a job Jk,t for determining whether the
release of job Ji,t′ leads to a preemption, we can upper bound the preemption overhead in the interval (t, t′) using
preemption information computed earlier. In Figure 4, to determine whether the release of job J1,3 will result in a
preemption, we need to compute the response and start times of the lower priority job J4,0. While computing this

12

response and start times, there is complete knowledge of the number of preemptions in the interval [0, 3) which
can be used to bound the preemption overhead in this interval.

Let PUk
T S(t, t2) denote an upper bound on the number of preemptions in the time interval [t, t2) such that these

preemptions are caused by jobs having priority higher than job Jk,t. While computing the response time or start
time of Jk,t, we only need to consider jobs that have priority higher than Jk,t for preemption overhead. Let the
response time of job Jk,t be computed to determine whether the release of job Ji,t′ leads to a preemption. We
now give the modified best-load response time equation for Jk,t in the task system T S = 〈{T1, · · · , Tn}, RM〉. We
assume that a task Ti has higher priority than a task Tj in T S if and only if i < j.

BRT
(0)
RM (Jk,t) =ek + PUk

T S(t, min{ek, t′})δ1

BRT
(i)
RM (Jk,t) =

∑

l<k

{(b
(BRT

(i−1)
RM (Jk,t) − 1 + t − φl)

pl

c − b
(t − 1 − φl)

pl

c)el} + ek

BRT
(i)
RM (Jk,t) =BRT

(i)
RM (Jk,t) + PUk

T S(t, min{BRT
(i)
RM (Jk,t), t

′})δ1 (13)

In Eq. (13), preemption overhead PUk
T S(t, min{BRT

(i)
RM (Jk,t), t

′})δ1 is added to the current response time BRT
(i)
RM (Jk,t)

of the job. The best-load response time BRTRM (Jk,t) with preemption overhead is given by that value of

BRT
(i)
RM (Jk,t) such that BRT

(i)
RM (Jk,t) = BRT

(i−1)
RM (Jk,t). Other job response time equations in Section 3 can

be modified similarly to account for preemption overheads.

5.2 Schedulability Analysis for RM Scheduler

In this section we will derive schedulability conditions for a task system that uses RM scheduler. These conditions
will account for the execution overhead incurred by the task system due to preemptions. Schedulability test
for a task system scheduled using RM scheduler is done using worst case task response time analysis [13]. Let
T S = 〈{T1 = (p1, e1, 0), · · · , Tn = (pn, en, 0)}, RM〉 denote a task system where all tasks are released synchronously
at time t = 0. We assume that a task Ti has higher priority than a task Tj if and only if i < j. The worst case
response time r(k) of a task Tk can be computed using iterative equation given in [13].

r(0)(k) = ek

r(i)(k) =
∑

l<k

dr(i−1)(k)/pleel + ek (14)

r(k) is given by that value of r(i)(k) for which r(i)(k) = r(i−1)(k). It has been shown in [13] that synchronous
release of tasks is indeed the critical instant for all the tasks in the task system. Schedulability condition for T S
is then given as,

∀k : 1 ≤ k ≤ n, ∃t ∈ (0, pk], r(k) = t

To account for preemption overheads in the schedulability analysis of the task system, we will now modify Eq. (14)
using preemption bounds derived in Section 4. We assume that these preemption bounds have been derived
using response time equations that account for preemption overheads, as described in Section 5.1. Let T S =
〈{T1 = (p1, e1, φ1), · · · , Tn = (pn, en, φn)}, RM〉 denote a task system where we assume that a task Ti has higher
priority than a task Tj if and only if i < j. For each task Tk, let the initial release phase shift values φ1, · · · , φk be
given by the critical instant for task Tk in the task system T S and let δ1 be the execution overhead for each job
preemption.

Definition 5.1 Let rp(k) denote the worst case response time of a task Tk such that rp(k) accounts for the execution
overhead incurred by the task system as a result of preemptions. Then,

r(0)
p (k) = ek

r(i)
p (k) =

∑

l<k

d
(r

(i−1)
p (k) − φl)

pl

eel + ek

r(i)
p (k) = r(i)

p (k) + PUT S(r(i)
p (k))δ1 (15)

13

The worst case response time rp(k) for task Tk is given by that value of r
(i)
p (k) for which r

(i)
p (k) = r

(i−1)
p (k). In the

computation of PUT S(r
(i)
p (k)) we only consider tasks having priority higher than Tk, i.e., PUT S(r

(i)
p (k)) computes

an upper bound on the number of preemptions in a time interval of size r
(i)
p (k) when the task system only consists

of tasks T1, · · · , Tk. In each iteration, Eq. (15) first computes the worst case response time of task Tk without
considering preemption overheads. This worst case response time is then modified with the execution overhead
incurred by the task system for preemptions. Modified schedulability conditions for T S is then given as,

∀k : 1 ≤ k ≤ n, ∃t ∈ (0, pk], rp(k) = t (16)

5.3 Schedulability Analysis for EDF Scheduler

In this section we will derive schedulability conditions for a task system that uses EDF scheduler taking into
consideration preemption overheads. Schedulability test for a task system scheduled with EDF scheduler is given
using the demand bound function for that system. The demand bound function dbf(t) for a task system, is
the worst case resource demand generated by this system in any time interval of length t. Let T S = 〈{T1 =
(p1, e1, 0), · · · , Tn = (pn, en, 0)}, EDF 〉 denote a synchronous task system. The demand bound function for T S as
given in [4] is,

dbf(t) =

n
∑

k=1

(bt/pkcek) (17)

Assuming LCM denotes the least common multiple of the periods of all the tasks in T S , schedulability condition
for T S as given in [4] is,

∀t ∈ (0, LCM], dbf(t) ≤ t (18)

The demand bound function dbf(t) given in Eq. (17) can be modified to account for the execution overhead incurred
by the task system as a result of preemptions. Let T S = 〈{T1 = (p1, e1, φ1), · · · , Tn = (pn, en, φn)}, EDF 〉 denote
a task system. We assume that the initial release phase shift values φ1, · · · , φn are given by the critical instant
for the task system. Let δ1 denote the execution overhead incurred by the task system for each job preemption.
Demand bound function with preemption overhead, dbfp(t), is then given as,

dbfp(t) =

n
∑

k=1

(bmax{0, (t− φk)}/pkcek) + PUT S(t)δ1

For each time interval of length t, we add the preemption overhead PUT S(t)δ1 incurred by the task system to
its demand bound function. We assume that the preemption bound, PUT S(t), is derived using response time
equations that account for preemption overheads, as described in Section 5.1. Modified schedulability condition
taking into account preemption overhead is then given by,

∀t ∈ (0, LCM], dbfp(t) ≤ t

6 Evaluation

In this section we evaluate the proposed preemption upper bound in comparison with previously known pre-
emption bounds as well as with the exact number of preemptions generated using simulation. For a given task
system T S = 〈T ,A〉 and a time interval [0, L), we compute the previously known preemption bound, PBT S(L),
which is the number of jobs released in the interval [0, L), our preemption bound PUT S(L) computed using Eq. (9)
and our preemption estimate PET S(L) computed as in Section 4.4. We also simulate the task system to obtain
the actual number of preemptions, PNT S(L), occurring in the given interval.

For simulations, we use the following parameters for the task system T S : n is the number of tasks in T S , U
is the utilization of T S , and s is the utilization distribution skew; the utilization of each task is determined such
that the task with the lowest priority has an utilization of s ·U and the remaining utilization of (1− s) ·U is then
uniformly distributed among all the other tasks. For each set of these parameter values, we execute 100 task sets

14

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Utilization Distribution Skew

(a) under EDF scheduling

PU
PN
PE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Utilization Distribution Skew

(b) under RM scheduling

PU
PN
PE

Figure 6. Effect of utilization distribution skew

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70

The Number of Tasks

(a) under EDF scheduling

PU
PN
PE

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70

The Number of Tasks

(b) under RM scheduling

PU
PN
PE

Figure 7. Effect of the number of tasks

T having different values for the period and execution time of tasks. We simulate the same task set T twice, once
under RM and the other time under EDF scheduling.

In Figures 6, 7 and 8, the plots labeled “PU”, “PE” and “PN”, show the normalized values PUT S(L)/PBT S(L),
PET S(L)/PBT S(L) and PNT S(L)/PBT S(L), respectively. Each point in the “PU” and “PE” plots represents
the mean value over the 100 different task sets, for the normalized preemption bound PUT S(L)/PBT S(L) and the
estimate PET S(L)/PBT S(L), respectively. Similarly, each point in the “PN” plots represents the mean value for
the normalized actual number of preemptions PNT S(L)/PBT S(L) generated by simulation.

Figure 6 shows the effect of utilization distribution skew of a task system on the preemption upper bound
PUT S(L). For this simulation, we have assumed that the number of tasks n = 10 and utilization U = 0.5. In the
figure, when s is 0, it means that every task has the same task utilization. The preemption bound does not vary
much with respect to the actual number of preemptions for increasing skew values under EDF scheduling. Under
RM scheduling, the preemption bound infact gets better as the skew increases. As can be observed in the figure,
the preemption estimates PET S(L) are very close to the actual number of preemptions irrespective of the skew.
This observation for the estimate holds for all the parameter values, as can be seen in Figures 7 and 8.

Figure 7 shows the effect of the number of tasks on the preemption bound under RM and EDF scheduling, where
U = 0.5 and s = 0.5. The figure shows that both our preemption bound and the actual number of preemptions
increase rapidly for a small task set, and then stabilize for larger values of n.

Figure 8 shows the effect of utilization on our preemption upper bound under RM and EDF scheduling. These
simulations have been done with n = 10 and s = 0.5. The figure shows that our preemption bound improves
substantially for increasing values of utilization under EDF scheduling, but under RM scheduling, the bound
increases with utilization.

The implications of our simulation results can be summarized as follows: (1) our preemption upper bound

15

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Utilization

(a) under EDF scheduling

PU
PN
PE

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Utilization

(b) under RM scheduling

PU
PN
PE

Figure 8. Effect of utilization

 0

 0.002

 0.004

 0.006

 0.008

 0.01

0.10.010.0010.0001

ut
ili

za
tio

n

preemption overhead

Utilization Increase

PB
0.75*PB
0.10*PB

Figure 9. Utilization Increase due to Preemption Overhead

is much tighter than the previously known bound under both RM and EDF scheduling. (2) the bound does
not deteriorate significantly for increasing values of utilization, skew or number of tasks. (3) goodness of the
preemption estimate suggests that our approach of computing preemption bounds using job response times could
lead to extremely tight bounds with further research.

Let α denote the normalized preemption upper bound PUT S(L)/PBT S(L) and let δ be the execution overhead
incurred by the task system for each job preemption. If the number of tasks in the system is n and the average
value for the period of tasks is p∗, then the increase in utilization due to preemption overhead using the known
bound PBT S(L) can be given as,

UIPB =

L
p∗

× n × δ

L
=

n × δ

p∗

Similarly, the increase in utilization due to preemption overhead using upper bound PUT S(L) can be given as,

UIPU =
n × δ × α

p∗

Figure 9 plots the increase in utilization of the task system for increasing values of preemption overhead δ, where
n = 10 and p∗ = 100. That is, when δ = 0.1, the utilization increase UIPB is 0.01. As can be seen in the figure, for
small values of δ, the difference in utilization increase is insignificant. But for larger values of δ, the upper bound
developed in this paper can provide significant savings on utilization.For example, when α = 0.1 and δ = 0.1, the
utilization increase UIPU = 0.001 while the utilization increase UIPB = 0.01. This gives an utilization saving of
0.009.

16

7 Conclusion

In this paper we have developed upper and lower bounds for the number of preemptions occurring within a time
interval for a real-time task system that uses RM or EDF scheduler. These bounds have been developed using
job response time bounds developed in this paper. Schedulability conditions under RM and EDF schedulers have
also been modified to account for preemption overheads. The preemption bounds developed in this paper have
been used to compute the worst case execution overhead incurred by the task set as a result of job preemptions.
Simulation experiments show that the upper bound developed in this paper is tighter than previously known
preemption upper bounds by a factor of upto 90%. This simulation has been done for a large set of task systems
with varying parameters. Hence, any real-time analysis that uses preemption bounds can be made more precise
by using the upper bound developed in this paper.

We are interested in determining the critical instants for task systems when preemption overheads are taken
into consideration.

References

[1] L. Almeida and P. Pedreiras. Scheduling within temporal partitions: response-time analysis and server design.
In Proc. of International conference on Embedded software, pages 95–103, 2004.

[2] N. Audsley, A. Burns, and A. Wellings. Deadline monotonic scheduling theory and application. Control
Engineering Practice, 1(1):71–78, 1993.

[3] S. Baruah, R. Howell, and L. Rosier. Algorithms and complexity concerning the preemptive scheduling of
periodic, real-time tasks on one processor. Journal of Real-Time Systems, 2:301–324, 1990.

[4] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-time sporadic tasks on one processor.
In Proc. of IEEE Real-Time Systems Symposium, pages 182–190, December 1990.

[5] E. Bini and G. C. Buttazzo. The space of rate monotonic schedulability. In Proc. of IEEE Real-Time Systems
Symposium, December 2002.

[6] A. Burns and A. Wellings. Real-Time Systems and Programming Languages. Addison Wesley Longmain, 2001.

[7] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive scheduling. In Proc. of IEEE Real-Time
Systems Symposium, 2005.

[8] D. I. Katcher, H. Arakawa, and J. K. Strosnider. Engineering and analysis of fixed priority schedulers. Software
Engineering, 19(9):920–934, 1993.

[9] C. Lee, J. Hahn, Y. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee, and C. S. Kim. Analysis of
cache-related preemption delay in fixed-priority preemtive scheduling. IEEE Transactions on Computers,
47(6):700–713, 1998.

[10] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact characterization and
average case behavior. In Proc. of IEEE Real-Time Systems Symposium, pages 166–171, 1989.

[11] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced aperiodic responsiveness in hard real-time environ-
ments. In Proc. of IEEE Real-Time Systems Symposium, pages 110–123, 1992.

[12] G. Lipari and E. Bini. Resource partitioning among real-time applications. In Proc. of Euromicro Conference
on Real-Time Systems, 2003.

[13] C.L. Liu and J.W. Layland. Scheduling algorithms for multi-programming in a hard-real-time environment.
Journal of the ACM, 20(1):46–61, 1973.

[14] H. Ramaprasad and F. Mueller. Bounding preemption delay within data cache reference patterns for real-time
tasks. In Proc. of IEEE Real-Time Technology and Applications Symposium, 2006.

17

[15] M. Spuri. Analysis of deadline scheduled real-time systems. Technical Report RR-2772, INRIA, France, 1996.

[16] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling analysis of real-time systems with precise modeling of
cache related preemption delay. In Proc. of Euromicro Conference on Real-Time Systems, pages 41–48, 2005.

[17] K. Tindell, A. Burns, and A. J. Wellings. An extendible approach for analysing fixed priority hard real-time
tasks. Real-Time Systems Journal, 6(2), 1994.

18

